
CS 250 Software 
Security
Symbolic Execution



Classic Symbolic Execution

First paper: 1976 Symbolic Execution and Program Testing



Problem 1: Infinite execution path



Problem 2: Unsolvable formulas



Problem 3: Symbolic modeling
External function calls and system calls are 
hard to model
For efficiency, symbolic execution systems 
often model libc function calls.

File system related
String operations



Concolic Testing
Performs symbolic execution dynamically, while 
the program is executed on some concrete input 
values.
Generate some random input: x=22, y=7 and 
execute the program both concretely and 
symbolically
The concrete execution take the “else” branch 
on Line 7 and the symbolic execution generates 
the path constraint x != 2y
Negates a conjunct in the path constraint and 
solves x==2y and get a new test input x=2, y=1
Test the program with the new input



Concolic Testing: What is the benefit? 
Solve complex formulas

x == (y*y) mod 50, unsolvable if both x and y are 
symbolic
if we concretize y to its concrete value, now 
solvable

External library call and system call
E.g., fd = open(filename)
Set filename to its concrete value “/tmp/abc.txt”
Execute the system call concretely
Set fd to be concrete after the system call return



How to implement it?
Let’s start with KLEE

Symbolically Interpret and 
Concretely Execute LLVM IR 
Full Symbolic Environment 
Modeling
State Forking
Simple State Scheduling: 
Random/Coverage-Optimized

https://klee.github.io/

https://klee.github.io/


Angr: Symbolic Execution for Binary
https://angr.io/ 
Follows the similar design as Klee
Klee: C code -> LLVM bitcode, interpret 
LLVM bitcode
Angr: Binary -> VEX IR, interpret VEX IR in 
Python!

So it is slow!

https://angr.io/


S2E: Selective Symbolic Execution for Binary

https://s2e.systems/
Symbolically execute a software 
component in the VM
Concretely execute the rest
Based on QEMU
QEMU TCG IR -> LLVM IR -> KLEE 
backend

https://s2e.systems/


Still not good enough!
In DARPA CGC, most of the vulnerabilities are 
found by fuzzing! 

Too slow: Constraint collection + Constraint 
solving

State explosion problem

Complete environment modeling is hard



QSYM: A fast and scalable concolic 
execution engine for binary

https://github.com/sslab-gatech/qsym 

Big idea:
Sacrifice soundness for efficiency

It will be paired up with a fuzzer, so efficiency 
is way more important than soundness

https://github.com/sslab-gatech/qsym


QSYM: Get rid of IRs

Why Intermediate Representations (Irs)?
Pros

Faithfully capture the instruction semantics
Provide architecture-independent interpretation

Cons
IR statements are 4-5 timers larger than instructions
Emulating/Interpreting IR is slow

QSYM’s design decision
Directly extract symbolic expressions/constraints from instructions
May not deal with complex instructions
Hard to support multiple architectures
Sacrifice soundness for efficiency



QSYM: Symbolic Emulation
Workflow:

Pintool-based dynamic 
binary instrumentation
For each instruction, checks 
if any operand is symbolic
If so, pass this instruction to 
symbolic backend

Problems:
Pin is closed source
Support only one arch
Shadow value analysis in 
Pin is expensive
A better alternative: QEMU



QSYM: Re-execution vs. State Forking
State forking

No need to re-execute (just recover from the snapshot)
State in concolic execution = program state + kernel state
Forking program state is trivial, but forking kernel state is 
not
Expensive to manage the states
Requires perfect environment modeling

Re-execution
No state management
May not be that slow
Time vs. Space trade-off 
Concrete environment



QSYM: Models minimal system calls
Only model system calls that are relevant to user 
interactions

Standard input, file read, …

Other system calls: just use concrete values
Execute them concretely

It will result in incomplete constraints
Yes, QSYM only models simple instructions anyway

Concretization needs to over-constrained 
analysis



QSYM: Strict Branch Flipping Policy
Look at current branch and last branch

Flip the current branch if this pair is new

It can solve state/path explosion problem, but 
may also miss important branches



QSYM: Constraint Solving
Full path constraints

Too expensive to collect
Sometimes over-
constrained

Nested Branch Solving
Only include constraints 
that have data 
dependencies with the 
last branch

Optimistic Solving
Only solve the last 
branch condition



QSYM: Basic Block Pruning
Some loop bodies can be executed 
repeatedly to generate symbolic constraints

Long execution and complex constraints

If a basic block is executed too frequently, 
stop generating constraints for them

Exponential back-off



QSYM is great! Is that it?
Even faster symbolic emulation

For Source code: 
Symbolic execution with SymCC: Don't interpret, compile!, in the 29th USENIX 
Security Symposium, August 2020
SymSan: Time and Space Efficient Concolic Execution via Dynamic Data-Flow 
Analysis, in the 31st USENIX Security Symposium, August 2022.

For Binary code: 
Compilation-based symbolic execution for binaries, in the ISOC Network and 
Distributed System Security Symosium, February 2021.
Our Work in submission 

Faster constraint solving
JIGSAW: Efficient and Scalable Path Constraints Fuzzing, in the 43rd IEEE 
Symposium on Security and Privacy, May 2022. 

More intelligent branch flipping
Marco: A Stochastic and Asynchronous Concolic Explorer, to appear in the 46th 
International Conference on Software Engineering, April 2024.

https://www.usenix.org/system/files/sec20-poeplau.pdf
https://www.cs.ucr.edu/~heng/pubs/symsan.pdf
https://www.cs.ucr.edu/~heng/pubs/symsan.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_2B-2_24118_paper.pdf
https://www.cs.ucr.edu/~heng/pubs/jigsaw_sp22.pdf
https://www.cs.ucr.edu/~heng/pubs/Marco-icse24.pdf


What else can be done?
Let’s brainstorm!


