

CS 250 Software Security

Symbolic Execution

Classic Symbolic Execution

First paper: 1976 Symbolic Execution and Program Testing

Problem 1: Infinite execution path

```
void testme_inf () {
1
               int sum = 0;
2
3
               int N = sym_input();
               while (N > 0) {
4
5
                   sum = sum + N;
                   N = sym_input();
6
7
               }
8
     }
```

Figure 3. Simple example to illustrate infinite number of execution paths.

Problem 2: Unsolvable formulas

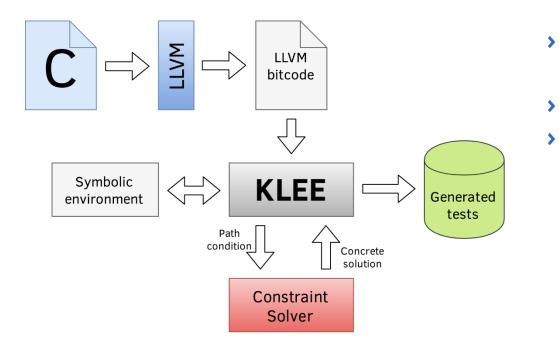
```
1 int twice (int v) {
2          return (v*v) % 50;
3 }
```

Figure 4. Simple modification of the example in Figure 1. The function twice now performs some non-linear computation.

Problem 3: Symbolic modeling UCR

- External function calls and system calls are hard to model
- For efficiency, symbolic execution systems often model libc function calls.
 - File system related
 - > String operations

Concolic Testing


- Performs symbolic execution dynamically, while the program is executed on some concrete input values.
- Generate some random input: x=22, y=7 and execute the program both concretely and symbolically
- The concrete execution take the "else" branch on Line 7 and the symbolic execution generates the path constraint x != 2y
- Negates a conjunct in the path constraint and solves x==2y and get a new test input x=2, y=1
- > Test the program with the new input

Concolic Testing: What is the benefit?

- Solve complex formulas
 - x == (y*y) mod 50, unsolvable if both x and y are symbolic
 - if we concretize y to its concrete value, now solvable
- External library call and system call
 - E.g., fd = open(filename)
 - Set filename to its concrete value "/tmp/abc.txt"
 - > Execute the system call concretely
 - > Set fd to be concrete after the system call return

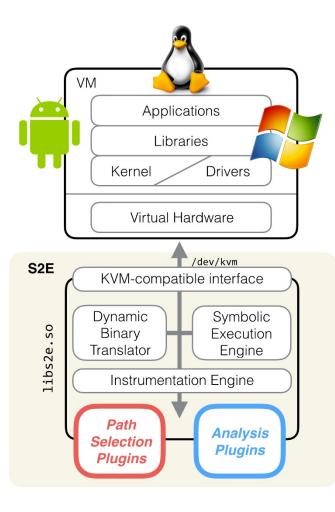
How to implement it?

Let's start with KLEE

UCR

- Symbolically Interpret and Concretely Execute LLVM IR
- Full Symbolic Environment Modeling
- > State Forking
 - Simple State Scheduling: Random/Coverage-Optimized

https://klee.github.io/


Angr: Symbolic Execution for Binary

- https://angr.io/
- Follows the similar design as Klee
- > Klee: C code -> LLVM bitcode, interpret LLVM bitcode
- Angr: Binary -> VEX IR, interpret VEX IR in Python!
 - > So it is slow!

S2E: Selective Symbolic Execution for Binary

https://s2e.systems/

- Symbolically execute a software component in the VM
- > Concretely execute the rest
- Based on QEMU
- QEMU TCG IR -> LLVM IR -> KLEE backend

Still not good enough!

- In DARPA CGC, most of the vulnerabilities are found by fuzzing!
- Too slow: Constraint collection + Constraint solving
- State explosion problem
- Complete environment modeling is hard

QSYM: A fast and scalable concolic execution engine for binary

- https://github.com/sslab-gatech/qsym
- > Big idea:
 - Sacrifice soundness for efficiency
- It will be paired up with a fuzzer, so efficiency is way more important than soundness

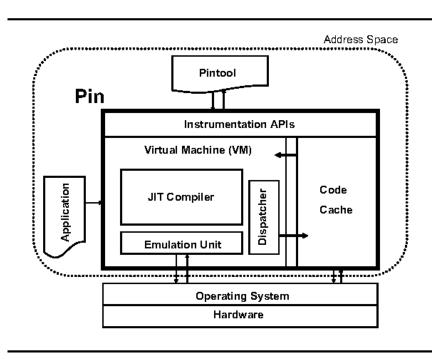
QSYM: Get rid of IRs

Executor	chksum	md5sum	sha1sum	md5sum(mosml)
Native	0.008	0.014	0.014	0.001
KLEE	26.243	32.212	73.675	0.285
angr	-	-	-	462.418

Why Intermediate Representations (Irs)?

- > Pros
 - > Faithfully capture the instruction semantics
 - > Provide architecture-independent interpretation
- Cons
 - > IR statements are 4-5 timers larger than instructions
 - Emulating/Interpreting IR is slow
- > QSYM's design decision
 - > Directly extract symbolic expressions/constraints from instructions
 - > May not deal with complex instructions
 - > Hard to support multiple architectures
 - Sacrifice soundness for efficiency

QSYM: Symbolic Emulation



- Pintool-based dynamic binary instrumentation
- For each instruction, checks if any operand is symbolic
- If so, pass this instruction to symbolic backend

Problems:

- > Pin is closed source
- > Support only one arch
- Shadow value analysis in Pin is expensive
- > A better alternative: QEMU

QSYM: Re-execution vs. State Forking UCR

- > State forking
 - No need to re-execute (just recover from the snapshot)
 - State in concolic execution = program state + kernel state
 - Forking program state is trivial, but forking kernel state is not
 - > Expensive to manage the states
 - > Requires perfect environment modeling
- Re-execution
 - > No state management
 - > May not be that slow
 - > Time vs. Space trade-off
 - > Concrete environment

QSYM: Models minimal system calls

- Only model system calls that are relevant to user interactions
 - Standard input, file read, …
- Other system calls: just use concrete values
 Execute them concretely
- It will result in incomplete constraints
 Yes, QSYM only models simple instructions anyway
- Concretization needs to over-constrained analysis

QSYM: Strict Branch Flipping Policy

- Look at current branch and last branch
- > Flip the current branch if this pair is new
- It can solve state/path explosion problem, but may also miss important branches

QSYM: Constraint Solving

- Full path constraints
 - > Too expensive to collect
 - Sometimes overconstrained
- Nested Branch Solving
 - Only include constraints that have data dependencies with the last branch
- > Optimistic Solving
 - Only solve the last branch condition

```
1 // @funcs.c:221 in file v5.6
2 if ((ms->flags & MAGIC_NO_CHECK_COMPRESS) == 0) {
3 m = file_zmagic(ms, &b, inname); // zlib decompress
4 ...
5 }
6
7 // other interesting code
1 // @funcs.c:177 in file v5.6
```

```
2 // looks_ascii()
3 if (ch >= 0x20 && ch < 0x7f)
4 ...
5 // file_tryelf()
6 if (ch == 0x7f)
7 ...</pre>
```

Figure 3: The first example shows that collecting complete constraints for complicated routines such as file_zmagic() could prohibit finding new paths. The second example shows that if a given concrete input follows a true path of looks_ascii(), it over-constrains the path not to find a true path of file_tryelf().

QSYM: Basic Block Pruning

- Some loop bodies can be executed repeatedly to generate symbolic constraints
- Long execution and complex constraints
- If a basic block is executed too frequently, stop generating constraints for them
- > Exponential back-off

QSYM is great! Is that it?

- > Even faster symbolic emulation
 - > For Source code:
 - Symbolic execution with SymCC: Don't interpret, compile!, in the 29th USENIX Security Symposium, August 2020
 - SymSan: Time and Space Efficient Concolic Execution via Dynamic Data-Flow Analysis, in the 31st USENIX Security Symposium, August 2022.
 - > For Binary code:
 - <u>Compilation-based symbolic execution for binaries</u>, in the ISOC Network and Distributed System Security Symosium, February 2021.
 - > Our Work in submission
- Faster constraint solving
 - > JIGSAW: Efficient and Scalable Path Constraints Fuzzing, in the 43rd IEEE Symposium on Security and Privacy, May 2022.
- > More intelligent branch flipping
 - Marco: A Stochastic and Asynchronous Concolic Explorer, to appear in the 46th International Conference on Software Engineering, April 2024.

What else can be done?

> Let's brainstorm!