
CS 250 Software Security

Reassemblable Assembly

1

Reassemblable Assembly

Assembly code with cross references

Two Tasks

Instruction Boundary Identification

Symbolization

2

Instruction Boundary Identification

Find which addresses correspond to which instructions

Challenges

X86 instructions have variable sizes

Data interleaves with instructions

3

Symbolization

4

What are possible solutions?

Dynamic Analysis

Observe what instructions are executed, and what numbers are

used as references

Sound, but not complete

Static Analysis

Statically extract some patterns

Unsound, potentially more complete than dynamic analysis

Combining dynamic and static analysis

Facts observed in dynamic analysis are trustworthy

5

Datalog Disassembly

Published in USENIX Security 2020

A logic inference approach

Collect facts statically

Encode expert knowledge as logic rules

Perform logic inference

6

What is logic programming?

 A method to perform optimized search over a finite domain.

 Reduce search space using pre-defined logic rules.

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

Facts form the problem domain

Logic rules describe the search problem

Logic programming - example

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

sibling(X, Y) :-

parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

father_child(mike, tom)?

True

father_child(X, tom)

X = mike

parent_child(sally, tom)

False

parent_child(X, Y)

X = tom, Y = sally

X = tom, Y = erica ...

Infer Instruction Boundary

Decode every possible offset in code sections

If the decoding fails at address A, we generate invalid(A)

9

Infer Instruction Boundary

Analyses and heuristics are expressed as Datalog rules:

If there is an instruction at address From that must fall

through, or jumps, or calls an address To that contains an

invalid instruction or no instruction at all, then the instruction

at From is also invalid.

10

Infer Instruction Boundary

Backward traversal: propagate invalid instructions

Forward traversal: build superset of all possible basic blocks

Assign points to candidate blocks using heuristics

Entry point: +20

Address appears in data section: +1

Direct jump: +6

…

Aggregate points to resolve overlaps (Datalog extension)

11

Symbolization

Naïve Approach

Numbers in the binary address range →Symbols

Numbers outside the range → Literals

False positives: A literal coincides with the binary address range

False negatives: symbol+constant

12

Symbolization: Reducing False Positives

Collect additional evidence (how the number is used) using

supporting analyses and heuristics

Assign points to candidates

Symbol

Symbol-Symbol

Strings

Other

Aggregate points to make a decision

13

Supporting Analysis: Def-Uses

Predicate: def_used(Adef, Reg, Ause)

Register Reg is defined in Adef and used in Ause

14

Supporting Analysis: Register Value Analysis

Predicate: reg_val(A1, Reg1, A2, Reg2, Mult, Disp)

value(Reg1@A1) = value(Reg2@A2) * Mult + Disp

15

Supporting Analysis: Data Access Patterns

Predicate: data_access_pattern(Addr, Size, Mult, Addr2)

Addr is accessed with size Size and multiplier Mult from

Addr2

16

Assigning Points

Use supporting analyses to enhance confidence

Candidates in data section

+ Pointer to instruction beginning: A symbol candidate points to the

beginning of an instruction.

+ Data access match: The data object candidate is accessed from

the code with the right size.

+ Symbol arrays: There are several contiguous or evenly spaced

symbol candidates.

+ Pointed by symbol array: Multiple candidates of the same type

pointed by a single array

- Data access conflict: There is some data access in the middle of a

symbol candidate

…

17

Experimental Evaluation

Ddisasm supports x64 Linux ELF binaries

Ddisasm is tested with

3 benchmark sets

7 compiler versions (GCC, Clang, and ICC)

6 compiler optimization flags

A total of 7658 binaries

Compared to Rambler (another tool based on Angr)

18

Accuracy

19

Disassembly Time in Seconds

20

Discussion

Reassembleable disassembly is undecidable in principle

Practical solutions are still possible

Other hints to leverage: metadata for relocation, position-

independent code, etc.

https://github.com/SystemSecurityStorm/Awesome-Binary-

Rewriting

Datalog Disassembly demonstrates a symbolic approach

What about neural approach, or neural-symbolic approach?

21

https://github.com/SystemSecurityStorm/Awesome-Binary-Rewriting
https://github.com/SystemSecurityStorm/Awesome-Binary-Rewriting

Lab 3: CFI and Shadow Stack

Binary Rewriting: use Datalog Disassembly

https://github.com/GrammaTech/ddisasm

Use its docker image

docker pull grammatech/ddisasm:latest

docker run -v "`pwd`":/shared -it grammatech/ddisasm bash

cd /shared

ddisasm CADET_00001 --asm CADET.s

as CADET.s -o CADET.out

ld CADET.out -e _start -o CADET_00001_rewritten

22

https://github.com/GrammaTech/ddisasm

Lab3: CFI Implementation (protecting ret)

23

Then I can validate return by replacing retq with

jmp_cfi_check_ret

Lab 3: You Job

Protecting indirect calls with CFI

A simple policy is fine: an indirect call can jump to any function entry

Protecting returns with shadow stack

A simple implementation is fine: pre-allocate a large buffer

No support for multi-threading is fine

No need to protect the shadow stack

24

	Slide 1: CS 250 Software Security
	Slide 2: Reassemblable Assembly
	Slide 3: Instruction Boundary Identification
	Slide 4: Symbolization
	Slide 5: What are possible solutions?
	Slide 6: Datalog Disassembly
	Slide 7: What is logic programming?
	Slide 8: Logic programming - example
	Slide 9: Infer Instruction Boundary
	Slide 10: Infer Instruction Boundary
	Slide 11: Infer Instruction Boundary
	Slide 12: Symbolization
	Slide 13: Symbolization: Reducing False Positives
	Slide 14: Supporting Analysis: Def-Uses
	Slide 15: Supporting Analysis: Register Value Analysis
	Slide 16: Supporting Analysis: Data Access Patterns
	Slide 17: Assigning Points
	Slide 18: Experimental Evaluation
	Slide 19: Accuracy
	Slide 20: Disassembly Time in Seconds
	Slide 21: Discussion
	Slide 22: Lab 3: CFI and Shadow Stack
	Slide 23: Lab3: CFI Implementation (protecting ret)
	Slide 24: Lab 3: You Job

