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Efficient Software-Based Fault 
Isolation
ACM SIGOPS 1993
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Why do we need SFI?
Use protection domains to isolate untrusted components

A web browser should isolate browser plugins
An OS should isolate device drivers

Designate a memory region for an untrusted component and instrument 
dangerous instructions in it to constrain its memory access and control 
transfer
Highly desirable to isolate untrusted components in separate protection 
domains, grant them minimum privileges

Gang Tan (2017), “Principles and Implementation Techniques of Software-Based Fault Isolation”, Foundations and Trends R in Privacy and Secruity: Vol. 1, No. 3, pp 137–198. DOI: 10.1561/3300000013.
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SFI Policy
A data region hols all data 
needed by the code
A code region where code is 
loaded into
A set of safe external code 
addresses
Three regions are mutually 
disjoint
Data-access policy: All memory 
reads and writes by the code 
should be within the data region
Control-flow policy: A control 
transfer by the code must stay 
within the code or target a safe 
external address
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SFI Enforcement
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Implementing IRM Rewriters
Binary-rewriting

Does not require source code
Disassembling binaries without metadata can be challenging
Optimizing checks in binaries is challenging

Compiler-based instrumentation
Requires access to source code
Perform more precise static analysis for optimizing checks
Portable across architectures
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Enforcing the Data-Access Policy
A naïve implementation can insert checks before all memory 
instructions

Mem(r1 + 12) := r2 à 

r10 := r1 + 12 
if (r10 < DB) goto error 
if (r10 > DL) goto error 
mem(r10) := r2

Too much runtime overhead
Need optimizations
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Data Region Specialization
Make all addresses have the same upper bits. 

These upper bits are called the data region ID.

mem(r1 + 12) := r2 à 

r10 := r1 + 12
r11 := r10 >> 16 
if (r11 6= 0x1234) goto error 
mem(r10) := r2

A right-shift instruction in more efficient than a conditional 
jump
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Integrity-only Isolation
A typical perform performs more memory reads than writes

To ensure the integrity of memory outside the data region, we 
only need to check memory writes

So, this weakened policy leads to much lower runtime 
overhead
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Address Masking
Force an address to be inside the data region

“mem(r1 + 12) := r2” à 

r10 := r1 + 12 
r10 := r10 & 0x0000FFFF 
r10 := r10 | 0x12340000 
mem(r10) := r2

PittSFIeld further fixes the data region ID to have only one 
single bit on

r10 := r1 + 12 
r10 := r10 & 0x2000FFFF 
mem(r10) := r2 
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Enforcing the Control-Flow Policy
Control transfers by the sandboxed code must stay in the code region or 
target a safe external address
One solution: A dedicated register is used to hold the jump target

Strengthened control-flow policy
All control-flow transfers must target the beginning of a pseudo instruction in the 
code or target a safe external address.
Fine-grained CFI (will be discussed later)
Aligned-chunk enforcement (PittSFIeld)
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Interaction with the Outside World
A list of predefined APIs that sandboxed code can call

A deep copy of arguments (also called marshalling)
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Control-Flow Integrity
ACM CCS 2005
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CFI: Control-Flow Integrity
Main idea: pre-determine control flow graph (CFG) of an 
application

Static analysis of source code
Static binary analysis   ¬ CFI
Execution profiling
Explicit specification of security policy

Execution must follow the pre-determined control flow graph
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CFI: Binary Instrumentation

Use binary rewriting to instrument code with runtime checks 
(similar to SFI)
Inserted checks ensure that the execution always stays within 
the statically determined CFG

Whenever an instruction transfers control, destination must be valid 
according to the CFG

Goal: prevent injection of arbitrary code and invalid control 
transfers (e.g., return-to-libc)

Secure even if the attacker has complete control over the thread’s 
address space
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CFG Example
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CFI: Control Flow Enforcement

For each control transfer, determine statically its possible 
destination(s)
Insert a unique bit pattern at every destination

Two destinations are equivalent if CFG contains edges to each from 
the same source

This is imprecise (why?)
Use same bit pattern for equivalent destinations

Insert binary code that at runtime will check whether the bit 
pattern of the target instruction matches the pattern of 
possible destinations
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CFI: Example of Instrumentation

Original code

Instrumented code

Abuse an x86 assembly instruction to
insert “12345678” tag into the binaryJump to the destination only if

the tag is equal to “12345678”
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CFI: Preventing Circumvention

Unique IDs
Bit patterns chosen as destination IDs must not appear anywhere else 
in the code memory except ID checks

Non-writable code
Program should not modify code memory at runtime

What about run-time code generation and self-modification?

Non-executable data
Program should not execute data as if it were code

Enforcement: hardware support + prohibit system calls that 
change protection state + verification at load-time
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Improving CFI Precision

Suppose a call from A goes to C, and a call from B goes to 
either C, or D (when can this happen?)

CFI will use the same tag for C and D, but this allows an “invalid” call 
from A to D
Possible solution: duplicate code or inline
Possible solution: multiple tags

Function F is called first from A, then from B; what’s a valid 
destination for its return?

CFI will use the same tag for both call sites, but this allows F to return 
to B after being called from A
Solution: shadow call stack
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CFI: Security Guarantees
Effective against attacks based on illegitimate control-flow 
transfer

Stack-based buffer overflow, return-to-libc exploits, pointer 
subterfuge

Does not protect against attacks that do not violate the 
program’s original CFG

Incorrect arguments to system calls
Substitution of file names
Other data-only attacks
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Performance Overhead
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Performance Overhead (2)
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What’s more?
Write-Integrity Testing (WIT): S&P 2008

For each memory write, pointer analysis is employed to compute the 
approximate set of objects that can be written by the memory write. At 
runtime, write sets are remembered by a color table and dynamic checks 
are used to prevent a memory write to change objects outside its write set. 

Data-Flow Integrity (DFI): OSDI 2006
DFI inserts checks before memory reads and writes to enforce the runtime 
data flow is compliant with the Data Flow Graph (DFG)

Memory Safety
SoftBound (PLDI 2009): enforce spatial memory safety
CETS (ISMM 2010): enforce temporal memory safety
CCured (POPL 2002): combines type inference and runtime checking

Code Pointer Integrity (CPI): OSDI 2014
CPI guarantees the integrity of all code pointers in a program
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