
CS 250 Software
Security
Fuzzing

1

What is Fuzzing?
A form of vulnerability analysis
Process:

Many slightly anomalous test cases are input into the
application
Application is monitored for any sign of error

2

Example
Standard HTTP GET request

§ GET /index.html HTTP/1.1

Anomalous requests
§ AAAAAA...AAAA /index.html HTTP/1.1
§ GET ///////index.html HTTP/1.1
§ GET %n%n%n%n%n%n.html HTTP/1.1
§ GET /AAAAAAAAAAAAA.html HTTP/1.1
§ GET /index.html HTTTTTTTTTTTTTP/1.1
§ GET /index.html HTTP/1.1.1.1.1.1.1.1
§ etc...

3

Types of Fuzzers
In terms of input generation

Generational:
Define new tests based on a model or grammar
CSmith, LangFuzz, IFuzzer, Skyfire, Nautilus

Mutational:
Mutate existing data samples to create test data
Bit flips, additions, substitution, havoc, crossover
Custom mutators:
https://github.com/AFLplusplus/AFLplusplus/tree/stabl
e/custom_mutators

4

https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators
https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators

Types of Fuzzers
In terms of program awareness

Blackbox: No awareness
Whitebox: Symbolic Execution
Greybox: API calls, Logs, Code Coverage, etc.

With program awareness, fuzzing becomes
evolutionary or genetic

Interesting inputs are kept as new seeds
More mutations are developed based on the new
seeds to discover more new seeds…

5

Whitebox Fuzzing (2012)
For a given input:

Perform symbolic execution,
When encountering a
symbolic branch “deep”
enough, generate a new
testcase

For each new testcase:
Execute it concretely
If it covers any new basic
blocks, keep it in the first-
level queue
If it covers a new path, keep it
in the second level queue

Fetch an input from first-
level and then second-level

6

Greybox Fuzzing

7

Seed Selection

Seed Scheduling

Seed Mutation

Instrumented
Program

Coverage
Bitmap

Queue of Seeds

Seed

Testcase

New
Seed

(2)

(3)

(1)

new coverage!

Coverage Metric
Coverage metric is utilized to measure the
quality of testcases during seed selection

HonggFuzz and Vuzzer: basic block coverage
AFL: improved branch coverage
LibFuzzer: block coverage or branch coverage
Angora: branch coverage extended with a calling context

8

Open Research Questions
RQ1:

How to define the differences among different coverage metrics
regarding their impact on greybox fuzzing?

RQ2:
Is there an optimal coverage metric that outperforms all the
others in greybox fuzzing?

RQ3:
Is it a good idea to combine different metrics during fuzzing?

9

Coverage Metric Sensitivity

10

Formal Definition of Sensitivity
Given two coverage metrics Ci and Cj ,
Ci is “more sensitive” than Cj if

11

where coverage metric C is defined as a function that
takes a program P, an input I and produces a
measurement M = C(P, I)

Coverage Metrics

Coverage Metric Sensitivity Measurement
branch coverage branch

n-gram branch coverage n consecutive branches
context-sensitive
branch coverage branch + calling context

memory-access aware
branch coverage branch + memory access (r&w) pattern

memory-write access
branch coverage branch + memory write pattern

12

Sensitivity Lattice

13

Implementation
Based on AFL

Instrumentation via user-model QEMU
Instrument conditional jump to get branch information
Instrument call and ret to get calling context information
Instrument memory load and store to get memory access information

Adopt the seed scheduling of AFLFast

Available at https://github.com/bitsecurerlab/afl-
sensitive

14

https://github.com/bitsecurerlab/afl-sensitive
https://github.com/bitsecurerlab/afl-sensitive

Comparison of Unique Crashes

15

Number of CGC binaries crashed by different coverage
metrics

Comparison of Time to First Crash

16Number of CGC binaries crashed overtime during fuzzing

Comparison of Seed Count

17

Partial CDFs of seeds generated by different coverage metrics on the
CGC dataset. A curve closer to the top left indicates fewer generated
seeds.

Answer to RQ2:
There is no grand slam coverage metric that can beat
others
Many of these more sensitive coverage metrics
indeed lead to finding more bugs as well as finding
them significantly fast
Different coverage metrics often result in finding
different sets of bugs.
At different times of the whole fuzzing process, the
best performer may vary.

18

Combination of Coverage Metrics

19

Number of CGC binaries crashed by combining different coverage metrics

Answer to RQ3
A combination of these different metrics can help
find more bugs and find them faster.

20

It is helpful to combine different
coverage metrics.

But how?

21

Our Solution:

Reinforcement Learning-based Hierarchical
Seed Scheduling

22

The more sensitive, the better?

23

Seed Explosion
Many more seeds that
exceed the fuzzer’s ability to
schedule
Given a fixed fuzzing
campaign time

Many fresh but useful seeds may
never be fuzzed
Important seeds may be not fuzzed
enough time

24

The coverage metric and the
corresponding seed scheduler should
be carefully crafted

The more sensitive, the better?

25

Challenge 1: too many (similar) seeds to examine

26

Seed Clustering
We use a less sensitive metric to cluster seeds selected
by a more sensitive metric
We use more than one level of clustering

27

A multi-level coverage metric

A Multi-level Coverage Metric
Seed pool is organized into a hierarchical tree

Internal nodes are coverage measurements and leaf nodes are seeds
An internal node represents a cluster of seeds with the same coverage

28

MF: function coverage
ME: edge coverage
MD: distance coverage

Seed scheduling is to seek a path from
the root to a leaf node

Challenge 2: seed exploration vs exploitation

29

Seed Exploitation & Exploration
Exploration: try out other fresh nodes

Fresh nodes that have rarely been fuzzed may lead to surprisingly new
coverage

Exploitation: keep fuzzing interesting nodes to trigger a
breakthrough

A few valuable nodes that have led to significantly more new coverage
than others in recent rounds encourage to focus on fuzzing them

30

Fuzzing & MAB Model
We model the fuzzing process as a multi-armed bandit
(MAB) problem
We adopt the UCB1 algorithm to schedule seeds within
levels to manage the balance between seed exploration
and exploitation.

31

A reinforcement learning-
based hierarchical seed
scheduler

RL-based Hierarchical Seed Scheduling
Scheduling

Internal level:
For each node, a score is calculated following the MAB model
Starting from the root node, select the child node with the highest score

Leaf level:
Select a seed with round-robin

Rewarding
At the end of each fuzzing round, nodes along the scheduled path will be
rewarded based on how much progress the current seed has made in
this round.

Whether there is new coverage exercised by the generated test cases

32

UCB1

Seed Scoring

33

Score = (Reward + Uncertainty) * Rareness

We prioritize nodes
that exercise rare
coverage features

We focus on nodes that have
generated test cases covering
rare features recently

We periodically try nodes that
have been rarely fuzzed or
contain many seeds

Seed Rewarding

34

Score = (Reward + Uncertainty) * Rareness

We favor newer rewards than
old ones
We propagate rewards from lower to
upper levels

Evaluation
Evaluation setup

Benchmarks
CGC (Darpa Cyber Grand Challenge), 180 binaries
Google FuzzBench, 20 real-world programs

Baseline fuzzers
CGC (vs AFL-Hier: MF + ME + MD)

AFL
AFLFast
AFL-Flat (the same coverage metrics, but with the fast scheduler from
AFLFast)

FuzzBench (vs AFL++-Hier)
AFL++
AFL++-Flat

35

Evaluation
Bug detection

36

AFL-Hier crashes more CGC binaries and faster.
Especially, it crashes the same number of binaries in
30 minutes, which AFLFast crashes in 2 hours

Evaluation
Edge coverage

37

On FuzzBench, AFL++-Hier achieves
higher coverage on 10 out of 20 programs

Much More about Fuzzing
Mutation Strategies

Schedule the most effective mutations
Grammar/structure aware mutations
LLMs

Hybrid Fuzzing: Combining Fuzzing and SE
AFL is dominant; What can SE do?

Directed Fuzzing
Drive executions to a target code location

A good resource: https://fuzzingbook.org
38

https://fuzzingbook.org/

IJON: Exploring
Deep State Spaces
via Fuzzing
IEEE Security and Privacy 2020

39

Basic Idea
Feedback is important for fuzzing

Humans have good insight

Let’s add annotation to guide fuzzing process

40

An Example: Maze
https://raw.githubusercontent.com/grese/klee-
maze/master/maze.c

Klee can solve this version
AFL cannot

A harder version
Neither can solve
Why?

41

https://raw.githubusercontent.com/grese/klee-maze/master/maze.c
https://raw.githubusercontent.com/grese/klee-maze/master/maze.c

Add an IJON annotation

42

Another Example: Protocol Fuzzing

43

Annotations for Protocol Fuzzing

44

Another Example: Super Mario Bros

45

Another Example: Hash Map Lookup

46

Annotated Version

47

More details
https://github.com/RUB-SysSec/ijon

48

void ijon_enable_feedback();
void ijon_disable_feedback();

#define _IJON_CONCAT(x, y) x##y
#define _IJON_UNIQ_NAME() IJON_CONCAT(temp,__LINE__)
#define _IJON_ABS_DIST(x,y) ((x)<(y) ? (y)-(x) : (x)-(y))

#define IJON_BITS(x) ((x==0)?{0}:__builtin_clz(x))
#define IJON_INC(x) ijon_map_inc(ijon_hashstr(__LINE__,__FILE__)^(x))
#define IJON_SET(x) ijon_map_set(ijon_hashstr(__LINE__,__FILE__)^(x))

#define IJON_CTX(x) ({ uint32_t hash = hashstr(__LINE__,__FILE__); ijon_xor_state(hash);
__typeof__(x) IJON_UNIQ_NAME() = (x); ijon_xor_state(hash); IJON_UNIQ_NAME(); })

#define IJON_MAX(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),(x))
#define IJON_MIN(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),0xffffffffffffffff-(x))
#define IJON_CMP(x,y) IJON_INC(__builtin_popcount((x)^(y)))
#define IJON_DIST(x,y) ijon_min(ijon_hashstr(__LINE__,__FILE__), _IJON_ABS_DIST(x,y))
#define IJON_STRDIST(x,y) IJON_SET(ijon_hashint(ijon_hashstack(), ijon_strdist(x,y)))

https://github.com/RUB-SysSec/ijon

Lab 2 Assignment
Experimenting with Symbolic Execution and
Fuzzing
Pick Some CGC Challenge Programs

https://github.com/hengyin/cb-
multios/tree/master/challenges

Try Klee and AFL (or AFL++)
Can they solve these challenges?
How much is the code coverage?

Try to add IJON annotations
Can your added annotations improve code coverage
and solve these challenges?

49

https://github.com/hengyin/cb-multios/tree/master/challenges
https://github.com/hengyin/cb-multios/tree/master/challenges

