
CS 250 Software
Security
Automatic Exploit Generation

1

An Example of Stack Overflow

2

Constructing a Simple Exploit for
Stack-based Overflow

Try to find an execution trace that would allow you to
control the program counter

Perform symbolic execution, and check if PC is symbolic
In the exploitable state (right before jump to the symbolic
PC), find a location to inject your shellcode

Search the virtual memory for a sequence of continuous symbolic
bytes that is large enough to fit the shellcode

Set the symbolic PC to the location of shellcode
Query the solver for the following constraints:

For i from 0 to shellcode_size: shellcode_location[i] = shellcode[i]
Symbolic_PC = shellcode_location
Path Predicate

3

Challenges
Symbolic execution is slow

We have talked about fast concolic execution
Transformation over input

Especially table lookup (e.g., isspace, isalpha,
toupper, tolower, mbtowc)

4

Symbolic Memory Index is Hard to Handle
Method 1: Concretization

5

Symbolic Memory Index is Hard to Handle
Method 2: Fully Symbolic

6

Mayhem’s Solution

Path predicate (Π)
constrains range
of symbolic memory
accesses

7

y = mem[x]

f t
x <= 42

x can be anything

f
t

x >= 50

Use symbolic execution state to:
Step 1: Bound memory addresses referenced
Step 2: Make search tree for memory address values

Π � 42 < x < 50

Step 1 — Find Bounds

8

mem[x & 0xff]

1.Value Set Analysis1 provides initial bounds
• Over-approximation

2.Query solver to refine bounds

Lowerbound = 0, Upperbound = 0xff

[1] Balakrishnan et al., Analyzing memory accesses in x86 executables, ICCC 2004

Step 2 — Index Search Tree Construction

9

y = mem[x]
if x = 1 then y = 10

Index

Memory
Value

10
12

22
20

if x = 2 then y = 12
if x = 3 then y = 22
if x = 4 then y = 20

ite(x < 3,
left, right)ite(x < 2,

left, right)

Fully Symbolic vs.
Index-based Memory Modeling

10

0

5000

10000

Fully Symbolic Index-based Piecewise Opt.

Time Timeout atphttpd
v0.4b

Index Search Tree Optimization:
Piecewise Linear Approximation

11

y = 2*x + 10

y = - 2*x + 28

Index

Memory
Value

Piecewise Linear Approximation

12

0

5000

10000

Fully Symbolic Index-based Piecewise Opt.

Time

2x faster

atphttpd
v0.4b

More Challenges
Path predicate might be overly constrained

This path is not feasible, but a slightly different
path is
Memory index concretization
Unsound concolic execution (concretize on
complex cases)

What about fuzzing?

13

Such exploits are too simple/unrealistic!
Easily defeated by existing defense

DEP: Data Execution Prevention
ASLR: Address Space Layout Randomization

Bypass DEP: ROP (Return-Oriented Programming)
https://github.com/mantvydasb/RedTeaming-Tactics-and-
Techniques/blob/master/offensive-security/code-injection-
process-injection/binary-exploitation/rop-chaining-return-oriented-
programming.md

Bypass ASLR: Leverage information leakage
Some register or memory at a relative position might already
contain a useful address
mov [reg], esp, add [reg], esp

How to fully automate it?
Angrop: https://github.com/angr/angrop

14

https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/mantvydasb/RedTeaming-Tactics-and-Techniques/blob/master/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming.md
https://github.com/angr/angrop

How to defend against control-flow
hijacking exploits?

Program Hardening (will be discussed later)
Control-Flow Integrity
Shadow Stack
Control Pointer Integrity

How to bypass these protections?
Data-oriented exploits.

15

Automatic
Generation of Data-
Oriented Exploits
USENIX Security 2015

16

17

18

A successful data-oriented exploit requires
The exploit input satisfies the program path
constraints to reach the memory error, create
new edges and continue the execution to
reach the target

The instructions executed in the exploit must
conform to the program’s static control flow
graph

A data flow stitching problem
19

Challenges
Large search space for stitching

Many possible target variables

Limited knowledge of memory layout.
How to bypass ASLR?

Complex program path constraints
The exploit must satisfy all path constraints
Avoid invalid memory accesses

20

How it works

21

More Details
Memory Error Influence Analysis

Use Symbolic Execution
Security-Sensitive Data Identification

Specific syscalls/libc calls: printf, send, setuid, etc.
Program secret, permission flags

Stitching Candidates
Path conditions reach memory error instructions
Path conditions continue to the target flow
Integrity of the control data

22

More Thinking
Exploit Generation vs. Vulnerability Discovery

Both are search problems
Exploit generation relies more on symbolic
execution, but fuzzing is useful too
Vulnerability discovery uses both fuzzing and
symbolic execution
Exploit generation is more directed
Vulnerability discovery can be directed or not.

23

