

CS 250 Software Security

Binary Code Embedding

- > Input Types (Must be numeric vector)
 - > Raw bytes
 - Manually Selected Features
 - > Automatically learned features (representation)

- > Problems
 - Malware Classification
 - Vulnerability Detection
 - > Function Argument Inference
 - > Type Inference
 - > Value-Set Analysis
 - > ...

Representation Learning in Other Domains UCR

- Natural Language
 - > Word Embeddings (word2vec)
- Image Processing
 - Kernels/Filters

Binary Code Representation (Embedding)

- > Disassembly
 - > DeepDi [USENIX Sec 2022]: A deep learning-based fast disassembler
- Instruction
 - > Word2Vec
 - Asm2Vec [S&P 2019]: A variant of Doc2Vec (PM-DM)
 - > PalmTree [CCS 2021]: An assembly language model based on BERT
- Basic Block
 - Sum up instruction embeddings
 - > InnerEye [NDSS 2019]
 - DeepBinDiff [NDSS 2020]
- Function
 - Genius [CCS 2016]: Codebook, vector quantization
 - > Gemini [CCS 2017]: Graph Neural Network

Function Embedding

Binary Code Clone Search

- Siven a piece of binary code (e.g., a binary function)
- > Quickly return a set of candidates
 - Semantically equivalent or similar
 - > May come from different architectures
 - May be generated by different compilers and options
- Applications
 - Vulnerability Search
 - > Plagiarism Detection
 - > Malware Provenance

Prior Work based on Graph Matching

Our Idea: DNN-based Function Presentation Learning

Dai, et al. Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016.

Input

• Attributed Control Flow Graph

Type

Table 1: Basic-block level features.

Fosturo Nomo

Manually selected features for now to support cross-architecture search

	Type	r catur c r taine				
		String Constants				
		Numeric Constants				
	Statistical Easturas	No. of Transfer Instructions				
	Statistical Features	No. of Calls				
		No. of Instructions				
		No. of Arithmetic Instructions				
	Structural Features	No. of offspring				
		Betweeness				

An example of ACFG

(a) Partial control flow graph of dtls1_process_heartbeat

Training: Siamese

- 1. Application-independent pretraining
 - Compile given source code into different platforms using different compilers and different optimization-levels
 - A pair of binary functions compiled from the same source code is labeled with +1
 - Otherwise, -1
- 2. Application-dependent retraining
 - Human can label similar and dissimilar pairs of binary functions
 - This additional training data can be used in a retraining process

Take a closer look at the embedding network

3. After the last iteration, the embeddings on all vertices are aggregated together

2. In each iteration, the embedding on each vertex is propagated to its neighbors

1. Initially, each vertex has an embedding vector computed from each code block

4. An affine transformation isapplied in the end to compute the embedding for the graph

Take a closer look at propagation UCR tanh μ_u^{i+1} ReLU +*n* layers . . . ReLU σ x_u Adjacent Vertices μ_v^i Current Vertex

Why Deep Neural Network?

- > High efficiency
 - Vector and Matrix Computations can be accelerated by SIMD and GPU
- > High accuracy
 - The model is trained end-to-end
 - > No graph matching algorithm!

Accuracy: ROC curve on test data

Serving time (per function processing time)

Genius: a few secs to a few mins Now: a few milliseconds

2500 × **to 16000** × **faster!**

Training time

Genius: > 1 week

Now: < 30 mins

Identified Vulnerabilities in Large Scale Dataset

Function Name	Vandar	Firmwara	Pipapy Filo	Similarity
ssl3 get new session ticket	D-Link	DAD-1562 FIRMWARE 1 00	what supplicant acfos	0.962374508
nort_check_v6	D-Link	DES-1202_11100WARE_2000	in ftnd acføs	0.955408692
sub_42EE7C	TP-Link	TD-W8970B V1 140624	racoon acfgs	0 954742193
sub_42EE7C	TP-Link	TD-W8970 V1 130828	racoon acfgs	0 954742193
prsa parse file	TP-Link	Archer D5 V1 140804	racoon.acfgs	0.949814439
sub_432B8C	TP-Link	TD-W8970B_V1_140624	racoon.acfgs	0.949583828
sub_432B8C	TP-Link	TD-W8970 V1 130828	racoon.acfgs	0.949583828
ssl3 get new session ticket	DD-wrt	dd-wrt.v24-23838 NEWD-2 K3.x mega-WNR3500v2 VC	openyph.acfgs	0.94668287
ucSetUsbipServer	TP-Link	WDR4900 V2 130115	httpd.acfgs	0.946312308
ssl3 get new session ticket	Netgear	tomato-Cisco-M10v2-NVRAM32K-1.28.RT-N5x-MIPSR2-110-PL-Mini	libssl.so.1.0.0.acfgs	0.945933044
ssl3 get new session ticket	Tomato by Shibby	tomato-K26-1.28.RT-MIPSR1-109-Mini	libssl.so.1.0.0.acfgs	0.945933044
ssl3 get new session ticket	Tomato by Shibby	tomato-K26USB-1.28.RT-N5x-MIPSR2-110-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3 get new session ticket	Tomato by Shibby	tomato-E4200USB-NVRAM60K-1.28.RT-MIPSR2-110-PL-BT	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E3000USB-NVRAM60K-1.28.RT-MIPSR2-110-BT-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-K26USB-1.28.RT-MIPSR1-109-AIO	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-Netgear-3500Lv2-K26USB-1.28.RT-N5x109-AIO	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E4200USB-NVRAM60K-1.28.RT-MIPSR2-109-AIO	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E1550USB-NVRAM60K-1.28.RT-N5x-MIPSR2-110-Nocat-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-K26USB-1.28.RT-N5x-MIPSR2-115-PL-L600N	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E1550USB-NVRAM60K-1.28.RT-N5x-MIPSR2-110-BT-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E3000USB-NVRAM60K-1.28.RT-MIPSR2-108-PL-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E1550USB-NVRAM60K-1.28.RT-N5x-MIPSR2-110-Mega-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E1200v2-NVRAM64K-1.28.RT-N5x-MIPSR2-108-PL-Max	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-K26USB-1.28.RT-MIPSR1-109-Mega-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E3000USB-NVRAM60K-1.28.RT-MIPSR2-109-Big-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-E4200USB-NVRAM60K-1.28.RT-MIPSR2-108-PL-Nocat-VPN	libssl.so.1.0.0.acfgs	0.945932984
ssl3_get_new_session_ticket	Tomato_by_Shibby	tomato-Netgear-3500Lv2-K26USB-1.28.RT-N5x110-ND-AIO	libssl.so.1.0.0.acfgs	0.945932984
ssl3 get new session ticket	Tomato by Shibby	tomato-F4200USB-NVRAM60K-1.28.RT-MIPSR2-109-Nocat-VPN	libssl.so.1.0.0.acfgs	0.945932984

Among top 50: 42 out of 50 are confirmed vulnerabilities

Previous work: 10/50

More Embedding Schemes Coming!

Gemini published in CCS, October 2017

- > 422 citations as of 08/10/2022
- > Asm2Vec, Oakland 2019
- > InnerEye, NDSS 2019
- FunctionSimSearch, Google Project Zero Team
- > CodeCMR, NeurIPS 2020
- > StateFormer, FSE 2021
- > jTrans, ISSTA 2022
- How ML is solving binary similarity problems, USENIX Security 2022

Project Zero

News and updates from the Project Zero team at Google

Tuesday, December 18, 2018

Searching statically-linked vulnerable library functions in executable code

Helping researchers find 0ld days

Posted by Thomas Dullien, Project Zero

On the side of academic research, several interesting papers (CCS '16, CCS '17 have proposed sophisticated machine-learning-based methods to combine code embeddings with approximate nearest neighbor searches. They calculate a representation of code in R^n, and then search for nearby points to identify good candidates. While these approaches look powerful and sophisticated, public implementations do not exist, and adoption among practitioners has not happened. On the practical side, real-world use has been derived from CFG-focused algorithms such as <u>MACHOC</u> - but with the downside of being not tolerant to structural changes and not allowing for any "learning" of distances. Recently at (<u>SSTIC '18</u>) a neural-network based approach has been presented, with an announcement of making the code available in the next months.

This file describes <u>FunctionSimSearch</u> - an Apache-licensed C++ toolkit with Python bindings which provides three things:

			AUC			MRR10			Recall@1		Test	ing time (s)
Model name	Description	XO	XA	XA+XO	XO	XA	XA+XO	XO	XA	XA+XO	Feat	Inf	Tot 100
[67] Zeek (direct comparison)	Strands	0.92	0.94	0.91	0.42	0.45	0.36	0.28	0.31	0.21	7225.41	67.00	9.92
[40] GMN (direct comparison)	CFG + BoW opc 200	0.97	0.98	0.96	0.75	0.84	0.71	0.66	0.77	0.61	1093.68	1005.00	1.83
[40] GMN (direct comparison)	CFG + No features	0.93	0.97	0.95	0.61	0.76	0.67	0.51	0.68	0.59	978.15	876.00	1.63
[40] GNN	CFG + BoW opc 200	0.95	0.97	0.95	0.67	0.79	0.67	0.57	0.73	0.57	1093.68	116.52	1.66
[40] GNN	CFG + No features	0.91	0.96	0.93	0.54	0.71	0.59	0.44	0.62	0.49	978.15	100.34	1.48
[76] GNN (s2v)	CFG + BoW opc 200	0.94	0.95	0.93	0.58	0.57	0.58	0.48	0.42	0.47	1093.68	118.59	1.66
[76] GNN (s2v)	CFG + Gemini	0.93	0.96	0.93	0.57	0.74	0.57	0.47	0.64	0.49	5139.91	98.40	7.18
[76] GNN (s2v)	CFG + No features	0.75	0.79	0.77	0.18	0.20	0.23	0.12	0.13	0.16	978.15	40.87	1.40
[45] w2v + AVG + GNN (s2v)	CFG + N. asm 150	0.90	0.88	0.87	0.46	0.31	0.42	0.38	0.18	0.33	1070.01	258.95	1.82
[45] w2v + wAVG + GNN (s2v)	CFG + N. asm 150	0.87	0.87	0.85	0.37	0.29	0.36	0.29	0.17	0.27	1070.01	253.72	1.81
[45] w2v + RNN + GNN (s2v)	CFG + N. asm 150	0.88	0.90	0.88	0.32	0.35	0.35	0.19	0.18	0.23	1070.01	685.50	2.41
 [49] w2v + SAFE [49] w2v + SAFE [49] w2v + SAFE + trainable [49] rand + SAFE + trainable 	N. asm 150	0.88	0.90	0.88	0.27	0.30	0.31	0.14	0.18	0.20	1031.23	33.33	1.46
	N. asm 250	0.86	0.88	0.87	0.28	0.32	0.28	0.16	0.19	0.19	1031.23	33.33	1.46
	N. asm 150	0.91	0.93	0.91	0.40	0.43	0.37	0.26	0.25	0.23	1031.23	33.57	1.46
	N. asm 150	0.90	0.91	0.90	0.28	0.33	0.31	0.14	0.17	0.21	1031.23	33.81	1.46
[14] Asm2Vec	Rand walks asm	0.94	0.69	0.75	0.60	0.07	0.22	0.49	0.02	0.18	978.15	5235.00	8.51
[38] PV-DM	Rand walks asm	0.94	0.66	0.72	0.64	0.08	0.23	0.51	0.05	0.19	978.15	5239.00	8.52
[38] PV-DBOW	Rand walks asm	0.94	0.66	0.72	0.63	0.07	0.23	0.50	0.03	0.20	978.15	3004.00	5.46
[60] Trex	512 Tokens	0.94	0.94	0.94	0.61	0.50	0.53	0.50	0.38	0.46	1493.58	1365.89	3.92
[74] Catalog_1	size 16	0.72	0.50	0.55	0.43	0.06	0.14	0.38	0.06	0.14	654.70	0.00	0.90
[74] Catalog_1	size 128	0.86	0.48	0.57	0.50	0.07	0.17	0.42	0.06	0.14	823.47	0.00	1.13
[18] FSS [18] FSS [18] FSS [18] FSS	G $G + M$ $G + M + I$ $w(G + M + I)$	0.77 0.79 0.80 0.83	0.81 0.68 0.68 0.80	0.77 0.69 0.69 0.78	0.26 0.29 0.30 0.43	0.35 0.15 0.16 0.30	0.32 0.21 0.20 0.36	0.18 0.23 0.23 0.36	0.26 0.09 0.10 0.23	0.26 0.15 0.14 0.29	1903.46 1903.46 1903.46 1903.46	466.07 466.07 466.07 466.07	3.25 3.25 3.25 3.25 3.25

Table 4: Comparison of fuzzy hashing and machine-learning models on Dataset-2

How ML is solving binary similarity problems, USENIX Security 2022

UCR

Efficiency – Embedding Generation

Gemini
 FunctionSimSearch
 Asm2Vec

R

Efficiency - Matching

Binary x 1.5M Functions

Accuracy - Cross Optimization Level

Accuracy - x86 vs x64

Binary Code Diffing

- > We all know BinDiff, right?
 - > Graph isomorphic matching with lots of heuristics
- > We developed DeepBinDiff
 - Learn an embedding for each basic block
 - Capture both block-level features and topological features in CFG via DeepWalk

DeepBinDiff Overview

Basic Block Embedding Generation

UCR

Graph Merge and TADW

Cross-Version Diffing F1-Score CDF on Coreutils

(a) v5.93 compared with v8.30 (b) v6.4 compared with v8.30

(c) v7.6 compared with v8.30 (d) v8.1 compared with v8.30

Cross-Optimization Diffing

PalmTree: Learning an Assembly Language Model for Instruction Embedding

ACM CCS 2021

Currently available at: https://github.com/palmtreemodel/PalmTree

Background – Input Choices

- 1. Raw-byte Encoding
 - Feed Raw-byte directly: αDiff (ASE'18)
 - One-hot encoding: converts each byte into a 256-dimensional vector. Shin et al. (USENIX'15), MalConv (AAAI Workshop'18), DeepVSA (USENIX'19)
 - > It does not provide any semantic level information.
- 2. Manual Encoding of Disassembled Instructions
 - Instruction2Vec (ICONI'17), Gemini (CCS'17)
 - > Expert knowledge.

Background – Input Choices

- 3. Learning-based Encoding
 - Word2vec: instruction word, function document
 - Code similarity detection: SAFE (DIMVA'19), InnerEye (NDSS'19)
 - Function prototype inference: EKLAVYA (USENIX'17)
 - > Doc2vec (PV-DM):
 - > Asm2Vec (S&P'19) treat instruction as one opcode and two operands
 - > Can carry higher-level semantic information. **However:**

Background – Challenges

Conditional Jump takes **EFLAGS** as an implicit input

Background – Challenges

2. Instructions can be reordered

PalmTree: a pre-trained assembly language model

PalmTree's Impact on Gemini

PalmTree's Impact on EKALAVYA

PalmTree's Impact on DeepVSA

Embeddings		Global			Heap			Stack			Other	
Linocuungs	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
one-hot	0.453	0.670	0.540	0.507	0.716	0.594	0.959	0.866	0.910	0.953	0.965	0.959
Instruction2Vec	0.595	0.726	0.654	0.512	0.633	0.566	0.932	0.898	0.914	0.948	0.946	0.947
word2vec	0.147	0.535	0.230	0.435	0.595	0.503	0.802	0.420	0.776	0.889	0.863	0.876
Asm2Vec	0.482	0.557	0.517	0.410	0.320	0.359	0.928	0.894	0.911	0.933	0.964	0.948
DeepVSA	0.961	0.738	0.835	0.589	0.580	0.584	0.974	0.917	0.944	0.943	0.976	0.959
PALM TREE-M	0.845	0.732	0.784	0.572	0.625	0.597	0.963	0.909	0.935	0.956	0.969	0.962
PALM TREE-MC	0.910	0.755	0.825	0.758	0.675	0.714	0.965	0.897	0.929	0.958	0.988	0.972
PALMTREE	0.912	0.805	0.855	0.755	0.678	0.714	0.974	0.929	0.950	0.959	0.983	0.971

DeepDi: Learning a Relational Graph Convolutional Network Model on Instructions for Fast and Accurate Disassembly

USENIX Security 2022

Cornerstone in Binary Analysis

BIN 10110	
01001	

Ca	ll Grapl	h
	main	
	lister	
	(listen k	
fork	accept	process

br il %eq, label %then, label %else

IR

%eq = icmp eq i32 %0,0

%sub = sub i32 %0,1

Gemini (CCS'17) rev.ng (CC'17) Karta B2SMatcher (ASE'19) Nucleus (EuroS&P'17) EKLAVYA (USENIX Security'17)

. . .

Existing Approaches

Methed	Dree	Cono	Efficiency*			
wiethod	Pros	Cons	CPU	GPU		
Recursive Disassembly	Low false positive rate	Low coverage, slow, vulnerable to obfuscation	10 – 200 KB/s	N/A		
Superset Disassembly (NDSS'18)	Fast, no false negative	85% false positive rate	4 – 5 MB/s	1+ GB/s		
Probabilistic Disassembly (ICSE'19)	No false negative	3% false positive rate, slow	4 KB/s	N/A		
Shingled Graph Disassembly (PAKDD'14)	Accurate, 2X faster than IDA Pro	Small evaluation dataset, closed source	70 – 200 KB/s	N/A		
Datalog Disassembly (USENIX Security'20)	Close to 100% accuracy	Slow, limited format support	4 – 50 KB/s	N/A		
XDA (NDSS'21)	Close to 100% accuracy	Slow	140 B/s	47 KB/s		

* CPU efficiency is tested on single core, GPU efficiency is tested on GTX 2080 Ti

x86 Instruction Decoding Challenges

- Code and data interleaving
 - String
 - Jump table
- > Dense encoding
 - Decoding will almost always succeed
- > Instructions are variable-length

Our Approach

Superset Disassembly

(c) Instruction Metadata

		Line	Opcode	ModRM	SIB	REX	Len	
		0	83	FA	00	00	3	
		1	FA	00	00	00	1	
		2	5C	00	00	00	1	
		3	75	00	00	00	2	
		4	02	FF	00	00	2	
		5	FF	03	00	00	2	
		6	03	8B	00	00	6	
		7	8B	0B	00	00	2	
		8	0B	90	00	00	6	
(a) Raw Bytes (b) Superset of Instructions							lata	
0: 83 1: FA 2: 5C 3: 75 4: 02 5: FF 6: 03 7: 8B	<pre>83 83 FA FA 5C Superset Disassembly 02 FF 03 88 0: cmp edx, 0x5C 1: cli 2: pop esp 3: jnz 0x07 4: add bh, bh 5: inc dword [ebx] 6: add ecx, dword [ebx+0x9090900B] 7: mov ecx, dword [ebx]</pre>							
8: ØB		8: or	edx, d	word [eax+0>	(90909	090]	

- Deterministic
- In GPU
 - Modified decoder to leverage GPU parallelism
- No false negative

Instruction Flow Graph

 (h_2)

Backward Edge Overlap Edge

Efficiency Evaluation

Generalizability Evaluation

Model	Test	Test							Function								
	Train	C)d	C	01	C	02	C	X	C)d	C)1	C)2	C	X
		Р	R	P	R	P	R	P	R	Р	R	P	R	P	R	P	R
DEEDDI	O 0	98.6	99.1	98.1	97.6	98.0	97.6	98.2	97.7	94.5	42.3	95.9	38.4	74.8	26.2	73.1	26.0
	01	98.6	98.9	97.2	96.6	97.9	97.1	98.0	97.1	94.9	60.5	93.3	76.8	72.2	72.1	69.5	71.9
DEEPDI	O2	98.9	99.7	98.3	98.6	98.3	98.5	98.2	98.6	89.4	47.3	86.7	61.6	82.6	55.0	83.1	53.7
	O3	98.2	99.0	97.7	96.9	98.1	97.3	98.1	97.4	80.4	21.0	78.7	39.5	72.9	30.9	74.3	32.5
	O 0	98.7	38.9	96.1	43.9	97.1	42.1	97.5	42.6	56.9	0.1	77.6	0.7	5.3	0.03	45.5	0.6
XDA	01	99.0	37.5	97.2	44.2	98.1	42.5	98.4	43.0	2.6	0.4	8.9	1.2	2.3	0.9	3.6	1.4
ADA	O2	99.1	38.7	97.2	46.5	98.2	44.2	98.5	44.6	16.8	0.5	57.6	3.8	29.5	2.9	34.1	3.9
	O3	98.9	39.8	97.3	47.6	98.1	44.8	98.4	45.1	8.7	0.2	40.4	1.4	7.6	0.4	20.5	1.4

Table 3: Precision and Recall on Unseen Binaries from an Unseen Compiler

Obfuscation Evaluation

Binaries Obfuscated by Linn and Debray's tool

Disassembler	Precision	Recall	Time
DEEPDI (GPU)	84.1	95.2	1.2s
XDA (GPU)	80.2	95.1	282s
IDA Pro	75.8	44.8	262s
Ghidra	69.1	47.0	10,240s

Impact on Malware Classification

Model	Training Accuracy	Testing Loss	Time (GPU)
Gemini	$96.52\% \pm 0.595$	0.134974 ± 0.036	7m
MalConv	$97.81\% \pm 0.659$	0.159165 ± 0.048	48.6s

Gemini: function embedding + min/max pooling + MLP

Model	Training Accuracy	Testing Loss	Time
EMBER	$99.13\% \pm 0.1747$	0.041541 ± 0.0022	21m
EMBER w/ code	$99.40\% \pm 0.2465$	0.024391 ± 0.0018	24m

Summary

- > ML/DL is powerful tool for binary analysis
- > We have built a pipeline
 - Fast and Accurate Disassembly
 - > Pretrained Instruction Embedding
 - Context-aware Basic Block Embedding
 - Function Embedding