
CS 250 Software Security

Binary Code Embedding

1

When Binary Analysis Meets Deep Learning

Input Types (Must be numeric vector)

Raw bytes

Manually Selected Features

Automatically learned features (representation)

Problems

Malware Classification

Vulnerability Detection

Function Argument Inference

Type Inference

Value-Set Analysis

…

Binary

Program
DNN Model

Classification

Result

2

Representation Learning in Other Domains

Natural Language

Word Embeddings (word2vec)

Image Processing

Kernels/Filters

3

Binary Code Representation (Embedding)

Disassembly

DeepDi [USENIX Sec 2022]: A deep learning-based fast disassembler

Instruction

Word2Vec

Asm2Vec [S&P 2019]: A variant of Doc2Vec (PM-DM)

PalmTree [CCS 2021]: An assembly language model based on BERT

Basic Block

Sum up instruction embeddings

InnerEye [NDSS 2019]

DeepBinDiff [NDSS 2020]

Function

Genius [CCS 2016]: Codebook, vector quantization

Gemini [CCS 2017]: Graph Neural Network

4

Function Embedding

Numeric Vector (or Embedding)

Such that two functions that have the same

semantics (same I/O behaviors) will have

similar embeddings (distance is short), and

two functions with different semantics will have

dissimilar embeddings (distance is long).

5

Binary Code Clone Search

Given a piece of binary code (e.g., a binary function)

Quickly return a set of candidates

Semantically equivalent or similar

May come from different architectures

May be generated by different compilers and options

Applications

Vulnerability Search

Plagiarism Detection

Malware Provenance

6

Prior Work based on Graph Matching

7

Vulnerability

Search Engine

CFG Ranking List

Graph matching is NP-hard problem!

The most efficient algorithm is

O(n^3) for two graph matching

It is impossible to conduct

pair-wise graph matching in

large code repo!

“Multi-MH & Multi-k-MH”[Pewny et al. Oakland’15]

“DiscovRe” [Eschweiler et al. NDSS’16]

Our Idea: DNN-based Function Presentation Learning

𝑥1

𝑥2

𝑥3

Attributed Control
Flow Graph

Dai, et al. Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016.

8

Input

9

• Attributed Control Flow Graph

Manually selected features for now to support cross-architecture search

An example of ACFG

10

Training: Siamese

1. Application-independent pretraining
• Compile given source code into different

platforms using different compilers and
different optimization-levels

• A pair of binary functions compiled from the
same source code is labeled with +1

• Otherwise, -1

2. Application-dependent retraining
• Human can label similar and dissimilar

pairs of binary functions
• This additional training data can be used in

a retraining process

11

Take a closer look at the embedding network

12

𝑥1

𝑥2

𝑥3

ACFG

𝜇1
0 𝜇2

0 𝜇3
0

𝜇1
1 𝜇2

1 𝜇3
1

…

𝜇1
𝑇 𝜇2

𝑇 𝜇3
𝑇

+

𝑇
 ite

ra
tio

n
s

𝜇𝑊2 ×

1. Initially, each vertex has an
embedding vector computed from
each code block

2. In each iteration, the embedding
on each vertex is propagated to its
neighbors

3. After the last iteration, the
embeddings on all vertices are
aggregated together

4. An affine transformation is
applied in the end to compute
the embedding for the graph

Take a closer look at propagation

13

𝑥𝑢 𝜇𝑣𝜇𝑣𝜇𝑣𝜇𝑣
𝑖

+

𝜎

Current Vertex

Adjacent

Vertices

𝑊1 ×

+

𝜇𝑢
𝑖+1

ReLU

𝑃1 ×

ReLU

𝑃𝑛 ×

tanh

… 𝑛 layers

Why Deep Neural Network?

High efficiency

Vector and Matrix Computations can be accelerated by SIMD and

GPU

High accuracy

The model is trained end-to-end

No graph matching algorithm!

14

Accuracy: ROC curve on test data

15

Serving time (per function processing time)

Genius: a few secs to a few mins

Now: a few milliseconds

𝟐𝟓𝟎𝟎 × to 𝟏𝟔𝟎𝟎𝟎 × faster!

16

Training time

Genius: > 1 week

Now: < 30 mins

17

Identified Vulnerabilities in Large Scale Dataset

Among top 50: 42 out

of 50 are confirmed

vulnerabilities

Previous work: 10/50

18

More Embedding Schemes Coming!

Gemini published in CCS, October 2017

422 citations as of 08/10/2022

Asm2Vec, Oakland 2019

InnerEye, NDSS 2019

FunctionSimSearch, Google Project Zero

Team

CodeCMR, NeurIPS 2020

StateFormer, FSE 2021

jTrans, ISSTA 2022

How ML is solving binary similarity

problems, USENIX Security 2022

19

20

How ML is solving binary similarity problems, USENIX Security 2022

Efficiency – Embedding Generation

6 sec

1 min

2.4 min per 300KB code

0

20

40

60

80

100

120

140

160

180

200

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000

T
im

e
 (

s
)

Code Size (byte)

Gemini FunctionSimSearch Asm2Vec
21

Efficiency - Matching

30 sec

12.5 min

-100

100

300

500

700

900

1100

1300

1500

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

T
im

e
 (

s
)

Code Size (byte)

Gemini FunctionSimSearch

Binary x 1.5M Functions

Asm2Vec

500KB code x 60K Functions

20 sec 22

Accuracy - Cross Optimization Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

ROC Curve

Gemini FunctionSimSearch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Rank

Recall Rate

Gemini FunctionSimSearch

Asm2Vec

23

Accuracy - x86 vs x64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

ROC Curve

Gemini FunctionSimSearch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Rank

Recall Rate

Gemini FunctionSimSearch

Asm2Vec

24

Binary Code Diffing

We all know BinDiff, right?

Graph isomorphic matching with lots of heuristics

We developed DeepBinDiff

Learn an embedding for each basic block

Capture both block-level features and topological features in

CFG via DeepWalk

25

DeepBinDiff Overview

26

Basic Block Embedding Generation

27

Graph Merge and TADW

28

Cross-Version Diffing F1-Score CDF on Coreutils

29

Cross-Optimization Diffing

30

ACM CCS 2021

PalmTree: Learning an Assembly Language

Model for Instruction Embedding

Currently available at:

https://github.com/palmtreemodel/PalmTree

Background – Input Choices

1. Raw-byte Encoding

Feed Raw-byte directly: αDiff (ASE’18)

One-hot encoding: converts each byte into a 256-dimensional

vector. Shin et al. (USENIX’15), MalConv (AAAI Workshop’18),

DeepVSA (USENIX’19)

It does not provide any semantic level information.

2. Manual Encoding of Disassembled Instructions

Instruction2Vec (ICONI’17), Gemini (CCS’17)

Expert knowledge.

Background – Input Choices

3. Learning-based Encoding

Word2vec: instruction – word, function – document

➢ Code similarity detection: SAFE (DIMVA’19), InnerEye (NDSS’19)

➢ Function prototype inference: EKLAVYA (USENIX’17)

Doc2vec (PV-DM):

➢ Asm2Vec (S&P’19) – treat instruction as one opcode and two operands

Can carry higher-level semantic information. However:

Background – Challenges

1. Instructions are complex and diverse

Memory operand: base+index*scale+displacement

CPU registers
Small Constant

A constant or a

string symbol

Conditional Jump takes EFLAGS as an implicit input

Background – Challenges

2. Instructions can be reordered

Data Dependency

Data Dependency

PalmTree: a pre-trained assembly language model

Targeting

Challenge 1

Targeting

Challenge 2

PalmTree’s Impact on Gemini

37

PalmTree’s Impact on EKALAVYA

38

PalmTree’s Impact on DeepVSA

39

DeepDi: Learning a Relational Graph

Convolutional Network Model on

Instructions for Fast and Accurate

Disassembly

USENIX Security 2022

40

Cornerstone in Binary Analysis

Gemini (CCS'17)

rev.ng (CC'17)

Karta

B2SMatcher (ASE'19)

Nucleus (EuroS&P'17)

EKLAVYA (USENIX Security'17)

…

%eq = icmp eq i32 %0, 0
br il %eq, label %then, label %else
%sub = sub i32 %0, 1

main

listen

fork accept process

CFG

IR

Call Graph

...

Existing Approaches

Method Pros Cons
Efficiency*

CPU GPU

Recursive Disassembly Low false positive rate Low coverage, slow,

vulnerable to obfuscation

10 – 200

KB/s

N/A

Superset Disassembly

(NDSS'18)

Fast, no false negative 85% false positive rate 4 – 5 MB/s 1+ GB/s

Probabilistic Disassembly

(ICSE'19)

No false negative 3% false positive rate, slow 4 KB/s N/A

Shingled Graph

Disassembly (PAKDD'14)

Accurate, 2X faster

than IDA Pro

Small evaluation dataset,

closed source

70 – 200

KB/s

N/A

Datalog Disassembly

(USENIX Security'20)

Close to 100%

accuracy

Slow, limited format support 4 – 50 KB/s N/A

XDA (NDSS'21) Close to 100%

accuracy

Slow 140 B/s 47 KB/s

* CPU efficiency is tested on single core, GPU efficiency is tested on GTX 2080 Ti

x86 Instruction Decoding Challenges

Code and data interleaving

String

Jump table

Dense encoding

Decoding will almost always succeed

Instructions are variable-length

41 54 57

A T W

41 54 57

push r12 push rdi

41 54 57

A push rsp push rdi

?

?

?

Our Approach

Superset Disassembly

• Deterministic

• In GPU
• Modified decoder to leverage

GPU parallelism

• No false negative

Instruction Flow Graph

Efficiency Evaluation

47

Generalizability Evaluation

48

Obfuscation Evaluation

49

Binaries Obfuscated by Linn and Debray’s tool

Impact on Malware Classification

50

Gemini: function embedding + min/max pooling + MLP

Summary

ML/DL is powerful tool for binary analysis

We have built a pipeline

Fast and Accurate Disassembly

Pretrained Instruction Embedding

Context-aware Basic Block Embedding

Function Embedding

51

	Slide 1: CS 250 Software Security
	Slide 2: When Binary Analysis Meets Deep Learning
	Slide 3: Representation Learning in Other Domains
	Slide 4: Binary Code Representation (Embedding)
	Slide 5: Function Embedding
	Slide 6: Binary Code Clone Search
	Slide 7: Prior Work based on Graph Matching
	Slide 8: Our Idea: DNN-based Function Presentation Learning
	Slide 9: Input
	Slide 10: An example of ACFG
	Slide 11: Training: Siamese
	Slide 12: Take a closer look at the embedding network
	Slide 13: Take a closer look at propagation
	Slide 14: Why Deep Neural Network?
	Slide 15: Accuracy: ROC curve on test data
	Slide 16: Serving time (per function processing time)
	Slide 17: Training time
	Slide 18: Identified Vulnerabilities in Large Scale Dataset
	Slide 19: More Embedding Schemes Coming!
	Slide 20
	Slide 21: Efficiency – Embedding Generation
	Slide 22: Efficiency - Matching
	Slide 23: Accuracy - Cross Optimization Level
	Slide 24: Accuracy - x86 vs x64
	Slide 25: Binary Code Diffing
	Slide 26: DeepBinDiff Overview
	Slide 27: Basic Block Embedding Generation
	Slide 28: Graph Merge and TADW
	Slide 29: Cross-Version Diffing F1-Score CDF on Coreutils
	Slide 30: Cross-Optimization Diffing
	Slide 31
	Slide 32: Background – Input Choices
	Slide 33: Background – Input Choices
	Slide 34: Background – Challenges
	Slide 35: Background – Challenges
	Slide 36: PalmTree: a pre-trained assembly language model
	Slide 37: PalmTree’s Impact on Gemini
	Slide 38: PalmTree’s Impact on EKALAVYA
	Slide 39: PalmTree’s Impact on DeepVSA
	Slide 40: DeepDi: Learning a Relational Graph Convolutional Network Model on Instructions for Fast and Accurate Disassembly
	Slide 41: Cornerstone in Binary Analysis
	Slide 42: Existing Approaches
	Slide 43: x86 Instruction Decoding Challenges
	Slide 44: Our Approach
	Slide 45: Superset Disassembly
	Slide 46: Instruction Flow Graph
	Slide 47: Efficiency Evaluation
	Slide 48: Generalizability Evaluation
	Slide 49: Obfuscation Evaluation
	Slide 50: Impact on Malware Classification
	Slide 51: Summary

