
CS 250 Software Security

Binary Code Embedding
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When Binary Analysis Meets Deep Learning

Input Types (Must be numeric vector)

Raw bytes

Manually Selected Features

Automatically learned features (representation)

Problems

Malware Classification

Vulnerability Detection

Function Argument Inference

Type Inference

Value-Set Analysis

…

Binary 

Program
DNN Model

Classification 

Result

2



Representation Learning in Other Domains

Natural Language

Word Embeddings (word2vec)

Image Processing

Kernels/Filters
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Binary Code Representation (Embedding)

Disassembly

DeepDi [USENIX Sec 2022]: A deep learning-based fast disassembler

Instruction

Word2Vec

Asm2Vec [S&P 2019]: A variant of Doc2Vec (PM-DM)

PalmTree [CCS 2021]: An assembly language model based on BERT

Basic Block

Sum up instruction embeddings

InnerEye [NDSS 2019]

DeepBinDiff [NDSS 2020]

Function

Genius [CCS 2016]: Codebook, vector quantization

Gemini [CCS 2017]: Graph Neural Network
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Function Embedding

Numeric Vector (or Embedding)

Such that two functions that have the same 

semantics (same I/O behaviors) will have 

similar embeddings (distance is short), and 

two functions with different semantics will have 

dissimilar embeddings (distance is long).
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Binary Code Clone Search

Given a piece of binary code (e.g., a binary function)

Quickly return a set of candidates

Semantically equivalent or similar

May come from different architectures

May be generated by different compilers and options

Applications

Vulnerability Search

Plagiarism Detection

Malware Provenance 
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Prior Work based on Graph Matching
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Vulnerability 

Search Engine

CFG Ranking List

Graph matching is NP-hard problem!

The most efficient algorithm is 

O(n^3) for two graph matching

It is impossible to conduct 

pair-wise graph matching in 

large code repo!

“Multi-MH & Multi-k-MH”[Pewny et al. Oakland’15]

“DiscovRe” [Eschweiler et al. NDSS’16]



Our Idea: DNN-based Function Presentation Learning

𝑥1

𝑥2

𝑥3

Attributed Control 
Flow Graph

Dai, et al. Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016.
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Input
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• Attributed Control Flow Graph

Manually selected features for now to support cross-architecture search



An example of ACFG
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Training: Siamese

1. Application-independent pretraining
• Compile given source code into different 

platforms using different compilers and 
different optimization-levels

• A pair of binary functions compiled from the 
same source code is labeled with +1

• Otherwise, -1

2. Application-dependent retraining
• Human can label similar and dissimilar 

pairs of binary functions
• This additional training data can be used in 

a retraining process
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Take a closer look at the embedding network
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1. Initially, each vertex has an 
embedding vector computed from 
each code block

2. In each iteration, the embedding 
on each vertex is propagated to its 
neighbors

3. After the last iteration, the 
embeddings on all vertices are 
aggregated together

4. An affine transformation is 
applied in the end to compute 
the embedding for the graph



Take a closer look at propagation
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Why Deep Neural Network?

High efficiency

Vector and Matrix Computations can be accelerated by SIMD and 

GPU

High accuracy

The model is trained end-to-end

No graph matching algorithm!
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Accuracy: ROC curve on test data
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Serving time (per function processing time)

Genius: a few secs to a few mins

Now: a few milliseconds

𝟐𝟓𝟎𝟎 × to 𝟏𝟔𝟎𝟎𝟎 × faster!
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Training time

Genius: > 1 week

Now: < 30 mins
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Identified Vulnerabilities in Large Scale Dataset

Among top 50: 42 out 

of 50 are confirmed 

vulnerabilities

Previous work: 10/50
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More Embedding Schemes Coming!

Gemini published in CCS, October 2017

422 citations as of 08/10/2022

Asm2Vec, Oakland 2019

InnerEye, NDSS 2019

FunctionSimSearch, Google Project Zero 

Team

CodeCMR, NeurIPS 2020

StateFormer, FSE 2021

jTrans, ISSTA 2022

How ML is solving binary similarity 

problems, USENIX Security 2022
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How ML is solving binary similarity problems, USENIX Security 2022



Efficiency – Embedding Generation

6 sec

1 min

2.4 min per 300KB code
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Efficiency - Matching

30 sec

12.5 min
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Accuracy - Cross Optimization Level
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Accuracy - x86 vs x64
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Binary Code Diffing

We all know BinDiff, right?

Graph isomorphic matching with lots of heuristics

We developed DeepBinDiff

Learn an embedding for each basic block

Capture both block-level features and topological features in 

CFG via DeepWalk
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DeepBinDiff Overview
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Basic Block Embedding Generation
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Graph Merge and TADW
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Cross-Version Diffing F1-Score CDF on Coreutils
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Cross-Optimization Diffing
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ACM CCS 2021

PalmTree: Learning an Assembly Language 

Model for Instruction Embedding

Currently available at: 

https://github.com/palmtreemodel/PalmTree



Background – Input Choices

1. Raw-byte Encoding

Feed Raw-byte directly: αDiff (ASE’18)

One-hot encoding: converts each byte into a 256-dimensional 

vector. Shin et al. (USENIX’15), MalConv (AAAI Workshop’18), 

DeepVSA (USENIX’19)

It does not provide any semantic level information.

2. Manual Encoding of Disassembled Instructions

Instruction2Vec (ICONI’17), Gemini (CCS’17)

Expert knowledge.



Background – Input Choices

3. Learning-based Encoding

Word2vec: instruction – word, function – document

➢ Code similarity detection: SAFE (DIMVA’19), InnerEye (NDSS’19)

➢ Function prototype inference: EKLAVYA (USENIX’17)

Doc2vec (PV-DM):

➢ Asm2Vec (S&P’19) – treat instruction as one opcode and two operands

Can carry higher-level semantic information. However:



Background – Challenges

1. Instructions are complex and diverse

Memory operand: base+index*scale+displacement

CPU registers
Small Constant

A constant or a 

string symbol

Conditional Jump takes EFLAGS as an implicit input



Background – Challenges

2. Instructions can be reordered

Data Dependency

Data Dependency



PalmTree: a pre-trained assembly language model

Targeting 

Challenge 1

Targeting 

Challenge 2



PalmTree’s Impact on Gemini
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PalmTree’s Impact on EKALAVYA
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PalmTree’s Impact on DeepVSA
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DeepDi: Learning a Relational Graph 

Convolutional Network Model on 

Instructions for Fast and Accurate 

Disassembly

USENIX Security 2022
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Cornerstone in Binary Analysis

Gemini (CCS'17)

rev.ng (CC'17)

Karta

B2SMatcher (ASE'19)

Nucleus (EuroS&P'17)

EKLAVYA (USENIX Security'17)

…

%eq = icmp eq i32 %0, 0
br il %eq, label %then, label %else
%sub = sub i32 %0, 1

main

listen

fork accept process

CFG

IR

Call Graph

...



Existing Approaches

Method Pros Cons
Efficiency*

CPU GPU

Recursive Disassembly Low false positive rate Low coverage, slow, 

vulnerable to obfuscation

10 – 200 

KB/s

N/A

Superset Disassembly 

(NDSS'18)

Fast, no false negative 85% false positive rate 4 – 5 MB/s 1+ GB/s

Probabilistic Disassembly 

(ICSE'19)

No false negative 3% false positive rate, slow 4 KB/s N/A

Shingled Graph 

Disassembly (PAKDD'14)

Accurate, 2X faster 

than IDA Pro

Small evaluation dataset, 

closed source

70 – 200 

KB/s

N/A

Datalog Disassembly 

(USENIX Security'20)

Close to 100% 

accuracy

Slow, limited format support 4 – 50 KB/s N/A

XDA (NDSS'21) Close to 100% 

accuracy

Slow 140 B/s 47 KB/s

* CPU efficiency is tested on single core, GPU efficiency is tested on GTX 2080 Ti



x86 Instruction Decoding Challenges

Code and data interleaving

String

Jump table

Dense encoding

Decoding will almost always succeed

Instructions are variable-length

41 54 57

A    T    W

41 54 57

push r12 push rdi

41 54 57

A push rsp push rdi

?

?

?



Our Approach



Superset Disassembly

• Deterministic

• In GPU
• Modified decoder to leverage 

GPU parallelism

• No false negative



Instruction Flow Graph



Efficiency Evaluation
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Generalizability Evaluation
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Obfuscation Evaluation
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Binaries Obfuscated by Linn and Debray’s tool



Impact on Malware Classification
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Gemini: function embedding + min/max pooling + MLP



Summary

ML/DL is powerful tool for binary analysis

We have built a pipeline

Fast and Accurate Disassembly

Pretrained Instruction Embedding

Context-aware Basic Block Embedding

Function Embedding
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