
Lab 3: CFI and Shadow Stack

Objective
The objective of this lab is to implement simple CFI and shadow stack to directly harden
binary code.

Challenge Programs
DARPA CGC challenge programs: https://github.com/hengyin/cb-
multios/tree/master/challenges.

Binary Rewriting
We will use datalog disassembly: https://github.com/GrammaTech/ddisasm

You can directly use its docker image:

docker pull grammatech/ddisasm:latest
docker run -v "`pwd`":/shared -it grammatech/ddisasm bash
cd /shared ddisasm CADET_00001 --asm CADET.s
as CADET.s -o CADET.out
ld CADET.out -e _start -o CADET_00001_rewritten

Task 1: CFI (60%)
Implement a simple CFI policy to protect indirect function calls (e.g., call *RAX). A simple
policy can be: an indirect call can jump to any function entry.

Task 2: Shadow Stack (40%)
Implement a simple shadow stack to protect return instructions. You can allocate a large
buffer to store the shadow stack in the data section.

https://github.com/hengyin/cb-multios/tree/master/challenges
https://github.com/hengyin/cb-multios/tree/master/challenges
https://github.com/GrammaTech/ddisasm

You need to include the following in your report:

1. Important code snippets and explanations of how you implement these two
protections.

2. Pick at least two programs to show that a) the protected binary can process normal
inputs correctly without crashing; and b) when you provide a malicious input that
hijacks the control flow, the protected binary can prevent it.

Rubrics:
For each task: Functionality (40%), Explanation (40%), Evaluation (20%)

	Objective
	Challenge Programs
	Binary Rewriting
	Task 1: CFI (60%)
	Task 2: Shadow Stack (40%)
	Rubrics:

