Advanced Operating Systems
(CS 202)

Memory Consistency, Cache Coherence
and Synchronization (Part 1)

R

UNIVERSITY OF CALIFORNIA, RIVERSIDE



Concurrency and Memory
Consistency

References:
Shared Memory Consistency Models: A Tutorial, Sarita V. Adve & Kourosh Gharachorloo, September 1995
A primer on memory consistency and cache coherence, Sorin, Hill and wood, 2011 (chapters 3 and 4)
Memory Models: A Case for Rethinking Parallel Languages and Hardware, Adve and Boehm, 2010

R

UNIVERSITY OF CALIFORNIA, RIVERSIDE



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Memory Consistency
» Formal specification of memory semantics

» Guarantees as to how shared memory will
behave on systems with multiple processors

» Ordering of reads and writes

» Essential for programmer (OS writer!) to
understand



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Why Bother?

» Memory consistency models affect everything
Programmability

Performance

Portabllity

» Model must be defined at all levels

» Programmers and system designers care




UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Uniprocessor Systems

» Memory operations occur:
One at a time
In program order

» Read returns value of last write
Only matters if location is the same or dependent
Many possible optimizations

» Intultive!



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

How does a core reorder? (1)

» Store-store reordering:
Non-FIFO write buffer

» Load-load or load-store/store-load reordering:
Out of order execution

» Should the hardware prevent any of this
behavior?



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Multiprocessor: Example

TABLE 3.1: Should r2 Always be Set to NEW?

Core C1 Core C2 Comments
S1: Store data = NEW; /* Initially, data = 0 & flag # SET */
S2: Store flag = SET; L1: Load rl = flag; /* L1 & B1 may repeat many times */

B1:if (r1 # SET) goto L1;
L2: Load r2 = data;




UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Cont'd

TABLE 3.2: One Possible Execution of Program in Table 3.1.
cycle Core C1 Core C2 Coherence state of data | Coherence state of flag
1 S2: Store flag=SET read-only for C2 read-write for C1
2 L1: Load r1=flag read-only for C2 read-only for C2
3 L2: Load r2=data read-only for C2 read-only for C2
4 S1: Store data=NEW read-write for C1 read-only for C2

» S2 and S1 reordered
Why? How?



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Example 2

TABLE 3.3: Can Both r1 and r2 be Set to 0?

Core C1 Core C2 Comments
S1: x =NEW; S2: y=NEW; /* Initially, x =0 & y = 0%/
Ll:rl=y; L2:12=x;




UNIVERSITY OF CALIFORNIA, RIVERSIDE

Sequential Consistency

» The result of any
execution is the same
as if all operations
were executed on a
single processor

» Operations on each
processor occur in the
sequence specified by
the executing program




UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RIV E RS I D E

On

e execution seguence

TABLE 3.1: Should r2 Always be Set to NEW?

Core C1 Core C2 Comments
S1: Store data = NEW; /* Initially, data = 0 & flag # SET */
S2: Store flag = SET; L1: Load rl = flag; /* L1 & B1 may repeat many times */

B1:if (rl # SET) goto L1;
L2: Load r2 = data;

L1:rl = flag; /* 0 */
-+ - — - — — - — — — — — -
S1: data = NEW; /* NEW */
oI T > L1:rl = flag; /%0 */
<4 - — — — - — — - — — — — — -
L1:rl = flag; /* 0 */
- - - — - - - - - —— = — -
S2: flag = SET; /* SET */
______________ > L1:rl = flag; /* SET */
-+ - ———— - — — - — — — -
- — — — - — — — — — — — — -

FIGURE 3.1: A Sequentially Consistent Execution of Table 3.1’s Program.

11



UNIVERSITY OF

program order (<p) of Core C1
S1: x = NEW; /* NEW */

memory order (<m)

program order (<p) of Core C2

______________ . S2: y = NEW; /* NEW */
- — — - - - — — — — — — — — -
L2: 12 =x;/* NEW #/
- — — — — — — — — — — — - — -
Outcome: (rl, r2) = (0, NEW)
(a) SC Execution 1
S2: y =NEW; /* NEW */
- — - - — — — — — — - — — — -
L2:r2=x;/*0%*/
S1:x = NEW; /* NEW */ -+ - — - — - — — — — — — -
—————————————— -
Ll:rl =y; /* NEW */
______________ 1 Outcome: (r1, £2) = (NEW, 0)
(b) SC Execution 2
S1:x = NEW; /* NEW */
—————————— - — — > S2:y = NEW, /* NEW */
Ll:rl =y; /* NEW %/ -t — - — - — — = — = — = — =
—————————————— - L2: 12 =x; /* NEW */
- — — — — — — — — — — — — — -
' Outcome: (rl, r2) = (NEW, NEW)
(c) SC Execution 3
S2: y = NEW; /* NEW */ \
L 122 =% /0% »
A~ . 7 ’

(d) NOT an SC Execution

Outcome: (rl, r2) = (0, 0) ¢

12



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

S.C. Disadvantages

» Difficult to implement!

» Huge lost potential for optimizations
Hardware (cache) and software (compiler)
Be conservative: err on the safe side
Major performance hit



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Relaxed Consistency
» Program Order relaxations (ditferent locations)
W= R: W > W: R > R/W

> Write Atomicity relaxations

Read returns another processor’s Write early
» Combined relaxations

Read your own Write (okay for S.C.)

» Safety Net — available synchronization
operations

> Note: assume one thread per core




UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RIV E RS I D E

Write = Read

» Can be reordered: same processor, different
locations

Hides write latency
» Different processors? Same location?

IBM 370
Any write must be fully propagated before reading

SPARC V8 - Total Store Ordering (TSO)

Can read its own write before that write is fully
propagated
Cannot read other processors’ writes before full
propagation

Processor Consistency (PC)
Any write can be read before being fully propagated



UNIVERSITY OF CALIFORNIA, RIVERSIDE

Write = Write

>

Can be reordered: same processor, different
locations

> Multiple writes can be pipelined/overlapped

> May reach other processors out of program order

Partial Store Ordering (PSO)

> Similar to TSO

» Can read its own write early
» Cannot read other processors’ writes early



