UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Scheduler Activations

Adopted some slides from www.cs.pdx.edu/~walpole/class/cs533/winter2007/slides/92.ppt

UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIJVE”R”STﬁrE
Managing Concurrency Using Threads

» User-level library
Management in application’s address space
High performance and very flexible
Lack functionality

» Operating system kernel
Poor performance (when compared to user-level threads)
Poor flexibility
High functionality

> New system: kernel interface combined with user-
level thread package

Same functionality as kernel threads
Performance and flexibility of user-level threads

HIVERSITY OF CALIFORMNIA

UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RiVE RSI D

User-level Threads

» Thread management routines linked into application
> No kernel intervention == high performance
» Supports customized scheduling algorithms == flexible

> (Virtual) processor blocked during system services == lack of
functionality

/O, page faults, and multiprogramming cause entire process to
block

[

Process
/ (“virtual processor”)

| Ay (T

[O]
Kernel
space ™

| N
Runtime system Thread table Process table

—

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Kernel Threads

> No system integration problems (system calls can be blocking
calls) == high functionality

> Extra kernel trap and copy and check of all parameters on all
thread operations == poor performance

» Kernel schedules thread from same or other address space

(process)
> Single, general purpose scheduling algorithm == lack of
flexibility (
PI‘OCG

User Thread

space <

Kernel g

space / \

/

Thread table Process table

HIVERSITY OF CALIFOR

u | 0 IFQRMN 1A
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Kernel Threads Supporting User-level
Threads

» Question: Can we accomplish system integration by
Implementing user-level threads on top of kernel threads?
» Typically one kernel thread per processor (virtual processor)
User-level thread blocks, so does kernel thread: processor idle

More kernel threads implicitly results in kernel scheduling of user-level
threads

Increasing communication between kernel and user-level will negate
performance and flexibility advantages of using user-level threads

» Answer: No
» Also:

No dynamic reallocation of processors among address spaces

Cannot ensure logical correctness of user-level thread system built on top
of kernel threads

UCRIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Goals (from paper)

> Functionality
No processor idles when there are ready threads
No priority inversion (high priority thread waiting for low priority one)
when its ready
When a thread blocks, the processor can be used by another thread

» Performance
Closer to user threads than kernel threads

> Flexibility
Allow application level customization or even a completely different
concurrency model

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Problems

> User thread does a blocking call?
Application loses a processor!
» Scheduling decisions at user and kernel not
coordinated

Kernel may de-schedule a thread at a bad time
(e.g., while holding a lock)

Application may need more or less computing
> Solution?

Allow coordination between user and kernel
schedulers

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Scheduler activations

» Allow user level threads to act like kernel
level threads/virtual processors

> Notify user level scheduler of relevant kernel
events

Like what?

> Provide space in kernel to save context of
user thread when kernel stops it

E.g., for I/O or to run another application

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Kernel upcalls

> New processor available
Reaction? Run time picks user thread to use it

» Activation blocked (e.g., for page fault)

Reaction? Runtime runs a different thread on the
activation

»> Activation unblocked
Activation now has two contexts
Running activation is preempted — why?
> Activation lost processor
Context remapped to another activation

> What do these accomplish?

UCRIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Runtime->Kernel

» Informs kernel when it needs more
resources, or when it is giving up some

> Could involve the kernel to preempt low
priority threads
Only kernel can preempt

> Almost everything else is user level!

Performance of user-level, with the advantages of
kernel threads!

10

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Virtual Multiprocessor

> Application knows how many and which processors
allocated to it by kernel.

> Application has complete control over which threads
are running on processors.

» Kernel notifies thread scheduler of events affecting
address space.

» Thread scheduler notifies kernel regarding processor

allocation.
User
space 9

Kernel space
(“virtual multiprocessor”) 7

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Scheduler Activations

» Vessels for running user-level threads

> One scheduler activation per processor assigned to
address space.

» Also created by kernel to perform upcall into
application’s address space
“Scheduler activation has blocked”
“Scheduler activation has unblocked”
“Add this processor”
“Processor has been preempted”

» Result: Scheduling decisions made at user-level and
application is free to build any concurrency model on
top of scheduler activations.

UNIVERSITY OF CALIFORNIA, RIVERSIDE

ERSITY OF CALIFQRE

UCKIVERSIDE

Scheduler activations (2)

Time

Time
T4

T';'TE User Program : User ngram
- -
User-Level /(cll’\ 09 1 (2) 5’ 3))
Runtime = 5{5{ : S'
System E":I : -
(B) {C.'J
Operating (A)
System Add A's thread
Kernel Pmcassor Processor has blocked
T,i,'];e User Program User Program
User-Level ﬁfj’]‘ i !{’.—\\((2} (4)
Runtime
System ;S!
. =~
(A) (B) TC) [(D) () (D)
Operating A’s thread
System and B's
Kernel thread can
continue
Processors . .

H :
., K
LI

Fig. 1.

Example: T/0 request /completion.

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Preemptions in critical sections

> Runtime checks during upcall whether
preempted user thread was running in a
critical section

Continues the user thread using a user level
context switch in this case

> Once lock is released, it switches back to original
thread

» Keep track of critical sections using a hash table of
section begin/end addresses

14

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RIVE RS I D E

Implementation

*Scheduler activations added to Topaz kernel thread management.
—Performs upcalls instead of own scheduling.
—EXxplicit processor allocation to address spaces.
*Modifications to FastThreads user-level thread package
—Processing of upcalls.
—Resume interrupted critical sections.

—Pass processor allocation information to Topaz.

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RiVE‘TrRFS1iIDFE
Performance

*Thread performance without kernel involvement similar to FastThreads
before changes.

*Upcall performance significantly worse than Topaz threads.
—Untuned implementation.
—Topaz in assembler, this system in Modula-2+.
*Application performance
—Negligible 1/O: As quick as original FastThreads.
—With 1/O: Performs better than either FastThreads or Topaz threads.

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RiVE‘TrRFS1iIDFE
Application Performance

(negligible 1/0)

-0 Topaz threads
=+ ~rig FastThrds
=M= rew FastThrds

4-
B 37
E -
_.u
a. 27
o
1
0= T T T T 1
1 2 3 i 5 6

number of processors

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory
available.

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RiVETRFSiIDFE
Application Performance (with I/O)

1007
- - =0~ Tgpaz threads
§ 80 =4 orig FastThrds
- ¥ new FastThrds
m —
E 60
- d
s
o 40 7
G E
-
5 20-
0
ad E
k2
v 0] T T T T T T T

100% 90% BO% 70% 60% 50% 40%

% available memory

Fig. 3. Execution tuime of N-Body application versus amount of available memory. 6
Processors.

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Discussion

> Summary:

Get user level thread performance but with
scheduling abilities of kernel level threads

Main idea: coordinating user level and kernel level
scheduling through scheduler activations

» Limitations
Upcall performance (5x slowdown)
Performance analysis limited

> Connections to exo-kernel/spin/microkernels?

19

