Advanced Operating Systems
(CS 202)

Scheduling (2)
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Lottery Scheduling
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Problems with Traditional schedulers

» Priority systems are ad hoc: highest priority always
wins

» Try to support fair share by adjusting priorities with a
feedback loop

Works over long term

highest priority still wins all the time, but now the Unix priorities
are always changing

» Priority inversion: high-priority jobs can be blocked
behind low-priority jobs

» Schedulers are complex and difficult to control
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Lottery scheduling

> Elegant way to implement proportional share
scheduling

> Priority determined by the number of tickets
each thread has:

Priority is the relative percentage of all of the tickets
whose owners compete for the resource

> Scheduler picks winning ticket randomly, gives
owner the resource

> Tickets can be used for a variety of resources
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Example

» Three threads
A has 5 tickets
B has 3 tickets
C has 2 tickets

» If all compete for the resource
B has 30% chance of being selected

» If only B and C compete
B has 60% chance of being selected
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Its fair
» Lottery scheduling is probabilistically fair

» If athread has at tickets out of T
» Its probability of winning a lottery is p =t/T
> Its expected number of wins over n drawings Is
np

» Binomial distribution
» Variance 0% = np(1 -p)
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Fairness (I
» Coefficient of variation of number of wins
o/np = V((1-p)/np)

Decreases with Vn

> Number of tries before winning the lottery
follows a geometric distribution

» As time passes, each thread ends receiving
its share of the resource
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Ticket transfers

How to deal with dependencies?
Explicit transfers of tickets from one client to another

v

» Transfers can be used whenever a client blocks due to
some dependency

When a client waits for a reply from a server, it can temporarily
transfer its tickets to the server
» Server has no tickets of its own

Server priority is sum of priorities of its active clients
» Can use lottery scheduling to give service to the clients

» Similar to priority inheritance
Can solve priority inversion
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Ticket inflation

» Lets users create new tickets
Like printing their own money
Counterpart is ticket deflation

Lets mutually trusting clients adjust their priorities
dynamically without explicit communication

» Currencies: set up an exchange rate
Enables inflation within a group
Simplifies mini-lotteries (e.g., for mutexes)
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Example (I)

» A process manages three threads
A has 5 tickets
B has 3 tickets
C has 2 tickets

» It creates 10 extra tickets and assigns
them to process C

Why?
Process now has 20 tickets
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Example (II)

» These 20 tickets are in a new currency
whose exchange rate with the base currency
Is 10/20

» The total value of the processes tickets
expressed in the base currency is still equal
to 10
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Compensation tickets (I)

» 1/0O-bound threads are likely get less than
their fair share of the CPU because they
often block before their CPU quantum expires

» Compensation tickets address this imbalance
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Compensation tickets (I

» A client that consumes only a fraction f of its
CPU quantum can be granted a
compensation ticket

Ticket inflates the value by 1/f until the client
starts gets the CPU
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Example

» CPU quantum is 100 ms

» Client A releases the CPU after 20ms
f=0.20r 1/5

» Value of all tickets owned by A will be
multiplied by 5 until A gets the CPU

» |Is this fair?

What if A alternates between 1/5 and full
guantum?
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Compensation tickets (lll)
» Compensation tickets
Favor I/O-bound—and interactive—threads
Helps them getting their fair share of the CPU
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IMPLEMENTATION

» On a MIPS-based DECstation running Mach
3 microkernel

> Time slice is 100ms
» Fairly large as scheme does not allow preemption
» Requires
» Afast RNG
» A fast way to pick lottery winner
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Example

» Three threads

A
B
C

nas 5 tic
nas 3 tic

KEets
KEets

nas 2 tic

Kets

» LISt contains
A (0-4)
B (5-7)

C

(8-9)

UCRIVERSIDE

Search time is O(n)
where n is list length
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Optimization — use tree

< / \>

< I >
RB Tree used in Linux /\
Completely fair scheduler(CFS)
--not lottery based
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Long-term fairness (I)
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Short term fluctuations
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Stride scheduling

> Deterministic version of lottery scheduling

» Mark time virtually (counting passes)

Each process has a stride: number of passes between
being scheduled

Stride inversely proportional to number of tickets
Regular, predictable schedule

» Can also use compensation tickets

» Similar to weighted fair queuing
Linux CFS is similar
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Stride Scheduling — Basic Algorithm

Client Variables:

» Tickets
> Relative resource allocation
s Strides ( Select Client with
. Minimum Pass
> Interval between selection
» Pass ( '
> Virtual index of next selection
- minimum ticket allocation Advance Client’'s Pass

by Client’s Stride
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Stride Scheduling — Basic Algorithm
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Stride Scheduling — Basic Algorithm
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Stride Scheduling — Basic Algorithm
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Stride Scheduling — Basic Algorithm
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Throughput Error Comparison

> 107 ] ; Error is independent
g _ _ of the allocation time
S } / in stride scheduling
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Accuracy of Prototype Implementation
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Linux scheduler
» Went through several iterations

» Currently CFS
Fair scheduler, like stride scheduling

Supersedes O(1) scheduler: emphasis on
constant time scheduling —why?

CFS is O(log(N)) because of red-black tree
Is it really fair?

> What to do with multi-core scheduling?



