Advanced Operating Systems
(CS 202)

Scheduling (2)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

CRIVERSIDE

Lottery Scheduling

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Problems with Traditional schedulers

» Priority systems are ad hoc: highest priority always
wins

» Try to support fair share by adjusting priorities with a
feedback loop

Works over long term

highest priority still wins all the time, but now the Unix priorities
are always changing

» Priority inversion: high-priority jobs can be blocked
behind low-priority jobs

» Schedulers are complex and difficult to control

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Lottery scheduling

> Elegant way to implement proportional share
scheduling

> Priority determined by the number of tickets
each thread has:

Priority is the relative percentage of all of the tickets
whose owners compete for the resource

> Scheduler picks winning ticket randomly, gives
owner the resource

> Tickets can be used for a variety of resources

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Example

» Three threads
A has 5 tickets
B has 3 tickets
C has 2 tickets

» If all compete for the resource
B has 30% chance of being selected

» If only B and C compete
B has 60% chance of being selected

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Its fair
» Lottery scheduling is probabilistically fair

» If athread has at tickets out of T
» Its probability of winning a lottery is p =t/T
> Its expected number of wins over n drawings Is
np

» Binomial distribution
» Variance 0% = np(1 -p)

CRIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Fairness (I
» Coefficient of variation of number of wins
o/np = V((1-p)/np)

Decreases with Vn

> Number of tries before winning the lottery
follows a geometric distribution

» As time passes, each thread ends receiving
its share of the resource

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Ticket transfers

How to deal with dependencies?
Explicit transfers of tickets from one client to another

v

» Transfers can be used whenever a client blocks due to
some dependency

When a client waits for a reply from a server, it can temporarily
transfer its tickets to the server
» Server has no tickets of its own

Server priority is sum of priorities of its active clients
» Can use lottery scheduling to give service to the clients

» Similar to priority inheritance
Can solve priority inversion

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RIV E RS I D E

Ticket inflation

» Lets users create new tickets
Like printing their own money
Counterpart is ticket deflation

Lets mutually trusting clients adjust their priorities
dynamically without explicit communication

» Currencies: set up an exchange rate
Enables inflation within a group
Simplifies mini-lotteries (e.g., for mutexes)

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Example (I)

» A process manages three threads
A has 5 tickets
B has 3 tickets
C has 2 tickets

» It creates 10 extra tickets and assigns
them to process C

Why?
Process now has 20 tickets

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Example (II)

» These 20 tickets are in a new currency
whose exchange rate with the base currency
Is 10/20

» The total value of the processes tickets
expressed in the base currency is still equal
to 10

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Compensation tickets (I)

» 1/0O-bound threads are likely get less than
their fair share of the CPU because they
often block before their CPU quantum expires

» Compensation tickets address this imbalance

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Compensation tickets (I

» A client that consumes only a fraction f of its
CPU quantum can be granted a
compensation ticket

Ticket inflates the value by 1/f until the client
starts gets the CPU

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Example

» CPU quantum is 100 ms

» Client A releases the CPU after 20ms
f=0.20r 1/5

» Value of all tickets owned by A will be
multiplied by 5 until A gets the CPU

» |Is this fair?

What if A alternates between 1/5 and full
guantum?

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Compensation tickets (lll)
» Compensation tickets
Favor I/O-bound—and interactive—threads
Helps them getting their fair share of the CPU

UNIVERSITY OF CALIFORNIA, RIVERSIDE

IMPLEMENTATION

» On a MIPS-based DECstation running Mach
3 microkernel

> Time slice is 100ms
» Fairly large as scheme does not allow preemption
» Requires
» Afast RNG
» A fast way to pick lottery winner

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Example

» Three threads

A
B
C

nas 5 tic
nas 3 tic

KEets
KEets

nas 2 tic

Kets

» LISt contains
A (0-4)
B (5-7)

C

(8-9)

UCRIVERSIDE

Search time is O(n)
where n is list length

UNIVERSITY OF CALIFORMNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE R IVERS I D E

Optimization — use tree

< / \>

< I >
RB Tree used in Linux /\
Completely fair scheduler(CFS)
--not lottery based

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Long-term fairness (I)

15 —
| °
=
é& | .
= 10— by
= i
=
e
= o
= ®
@
LD
s
ﬂ 1 | 1 | 1 | 1 I 1 |
0 2 4 6 8 10

Allocated Ratio

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Short term fluctuations

30000 —

20000

I __/\/\/\[\/\/\/\/\

I I I I I I I I | I I I I | I I I I |
0 50 100 150 200

Time (sec)

Average Iterations { per sec)

For
2.1
ticket
alloc.
ratio

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Stride scheduling

> Deterministic version of lottery scheduling

» Mark time virtually (counting passes)

Each process has a stride: number of passes between
being scheduled

Stride inversely proportional to number of tickets
Regular, predictable schedule

» Can also use compensation tickets

» Similar to weighted fair queuing
Linux CFS is similar

UNIVERSITY QOF CALIFQRMNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE R IVERS I D E

Stride Scheduling — Basic Algorithm

Client Variables:

» Tickets
> Relative resource allocation
s Strides (Select Client with
. Minimum Pass
> Interval between selection
» Pass ('
> Virtual index of next selection
- minimum ticket allocation Advance Client’'s Pass

by Client’s Stride

22

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Stride Scheduling — Basic Algorithm
A 0 ©§

0o 3:2:1 Allocation -
1 A - A (stride = 2) . _ 1
O - B (stride = 3) Time 1: ‘\J S 6
_ O - C (stride = 6) +2
151
] Time 2: 4 3 6
¥
=
= 1
> 10 -
% o
R
188
5_
{ A
100
] A
V———
0 5 10

Time (quanta)

23

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Stride Scheduling — Basic Algorithm

20 1
151

10 -

Pass Value

>® B8

3:2:1 Allocation

A - A (stride = 2)
O - B (stride = 3)

[- C (stride = 6)

or =
> @

Time 2:

Time 3:

5 10
Time (quanta)

Time 1:

A

2

+2

3 6
l’ >
OIS

+3

6 6

24

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Stride Scheduling — Basic Algorithm
A 0 ©§

20~
A - A (stride = 2) . _
O - B (stride = 3) Timel: 2 3 6
_ O - C (stride = 6) +2
15-
1 Time 2: 4 3 6
]
> 10 Time3: |4} 6 6
§ | Iime o. \‘,
A +2
|a0@
2 A. Time4: 6 6 6
10 @
] A
0 +——————
0 5 10

Time (quanta)

25

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Stride Scheduling — Basic Algorithm
A 0 ©§

20— 3:2:1 Allocation

A - A (stride = 2) . _
1 O-B (stride = 3) g Time 1: 2 3 6
] O - C (stride = 6) +2
15- %
1 f Time 2: 4 3 6
o A
= O
= +3
S / . N
g 5 Time3: [4; 6 6
o - A
A / +2
1 0 0O
2= Time4: 6 6 6
10
0 L L .
0 5 10

Time (quanta)

26

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE R IV E RS I D E

Throughput Error Comparison

> 107] ; Error is independent
g _ _ of the allocation time
S } / in stride scheduling

Stride

S P P Hierarchical stride

' scheduling has more
balance distribution of
] error between clients.

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Absolute Error (quanta)

Hierarchical

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

13 Tickets 7 Tickets 3 Tickets 1 Ticket

Time (quanta)

27

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Accuracy of Prototype Implementation

15+

conery seheculer . > Lottery and Stride
Scheduler implemented
. ‘ on real-system.
T e
& 10 »
s e » Stride scheduler stayed
g o A within 1% of ideal ratio.
g : A
¥ [2 » Low system overhead
8 v relative to standard
v Linux scheduler.
e
/"
0+— .
0 2 4 6 8 10

Ticket Ratio

28

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Linux scheduler
» Went through several iterations

» Currently CFS
Fair scheduler, like stride scheduling

Supersedes O(1) scheduler: emphasis on
constant time scheduling —why?

CFS is O(log(N)) because of red-black tree
Is it really fair?

> What to do with multi-core scheduling?

