
1

OS Extensibility: Spin,
Exo-kernel and L4

22

Extensibility
Problem: How?

Add code to OS
how to preserve isolation?

… without killing performance?

What abstractions?
General principle: mechanisms in OS, policies
through the extensions

What mechanisms to expose?

2

2

33

Spin Approach to extensibility
Co-location of kernel and extension

Avoid border crossings

But what about protection?

Language/compiler forced protection
Strongly typed language

Protection by compiler and run-time

Cannot cheat using pointers

Logical protection domains
No longer rely on hardware address spaces to enforce
protection – no boarder crossings

Dynamic call binding for extensibility
3

44

ExoKernel

4

3

55

Motivation for Exokernels
Traditional centralized resource management
cannot be specialized, extended or replaced

Privileged software must be used by all
applications

Fixed high level abstractions too costly for
good efficiency

Exo-kernel as an end-to-end argument

5

66

Exokernel Philosophy

Expose hardware to libraryOS
Not even mechanisms are
implemented by exo-kernel

They argue that mechanism is policy

Exo-kernel worried only about
protection not resource
management

6

4

77

Design Principles

Track resource ownership

Ensure protection by guarding resource
usage

Revoke access to resources

Expose hardware, allocation, names and
revocation

Basically validate binding, then let library
manage the resource

7

88

Exokernel Architecture

8

5

99

Separating Security from Management

Secure bindings – securely bind machine
resources

Visible revocation – allow libOSes to
participate in resource revocation

Abort protocol – break bindings of
uncooperative libOSes

9

1010

Secure Bindings
Decouple authorization from use

Authorization performed at bind time

Protection checks are simple operations
performed by the kernel

Allows protection without understanding

Operationally – set of primitives needed for
applications to express protection checks

10

6

1111

Example resource
TLB Entry

Virtual to physical mapping done by library

Binding presented to exo-kernel

Exokernel puts it in hardware TLB

Process in library OS then uses it without exo-
kernel intervention

11

1212

Implementing Secure Bindings
Hardware mechanisms: TLB entry, Packet
Filters

Software caching: Software TLB stores

Downloaded Code: invoked on every
resource access or event to determine
ownership and kernel actions

12

7

1313

Downloaded Code Example: (DPF)
Downloaded Packet Filter

Eliminates kernel crossings
Can execute when application is not
scheduled
Written in a type safe language and compiled
at runtime for security
Uses Application-specific Safe Handlers
which can initiate a message to reduce round
trip latency

13

1414

Visible Resource Revocation
Traditionally resources revoked invisibly

Allows libOSes to guide de-allocation and
have knowledge of available resources – ie:
can choose own ‘victim page’

Places workload on the libOS to organize
resource lists

14

8

1515

Abort Protocol
Forced resource revocation

Uses ‘repossession vector’

Raises a repossession exception

Possible relocation depending on state of
resource

15

1616

Managing core services
Virtual memory:

Page fault generates an upcall to the library OS
via a registered handler

LibOS handles the allocation, then presents a
mapping to be installed into the TLB providing a
capability

Exo-kernel installs the mapping

Software TLBs

16

9

1717

Managing CPU
A time vector that gets allocated to the different
library operating systems

Allows allocation of CPU time to fit the application

Revokes the CPU from the OS using an upcall
The libOS is expected to save what it needs and give
up the CPU

If not, things escalate

Can install revocation handler in exo-kernel

17

1818

Putting it all together
Lets consider an exo-kernel with
downloaded code into the exo-kernel

When normal processing occurs, Exo-
kernel is a sleeping beauty

When a discontinuity occurs (traps, faults,
external interrupts), exokernel fields them

Passes them to the right OS (requires book-
keeping) – compare to SPIN?

Application specific handlers

18

10

1919

Evaluation
Again, a full implementation

How to make sense from the quantitative
results?

Absolute numbers are typically meaningless
given that we are part of a bigger system

Trends are what matter

Again, emphasis is on space and time
Key takeaway at least as good as a
monolithic kernel

19

2020

Questions and conclusions
Downloaded code – security?

Some mention of SFI and little languages

SPIN is better here?

SPIN vs. Exokernel
Spin—extend mechanisms; some abstractions still exist

Exo-kernel: securely expose low-level primitives (primitive vs.
mechanism?)

Microkernel vs. exo-kernel
Much lower interfaces exported

Argue they lead to better performance

Of course, less border crossing due to downloadable code

20

11

2121

On Microkernel
construction (L3/4)

21

2222

L4 microkernel family
Successful OS with different offshoot
distributions

Commercially successful
OKLabs OKL4 shipped over 1.5 billion installations by
2012

Mostly qualcomm wireless modems

But also player in automative and airborne entertainment
systems

Used in the secure enclave processor on Apple’s A7 chips
All iOS devices have it! 100s of millions

22

12

2323

Big picture overview
Conventional wisdom at the time was:

Microkernels offer nice abstractions and should be flexible

…but are inherently low performance due to high cost of
border crossings and IPC

…because they are inefficient they are inflexible

This paper refutes the performance argument
Main takeaway: its an implementation issue

Identifies reasons for low performance and shows by construction that
they are not inherent to microkernels

10-20x improvement in performance over Mach

Several insights on how microkernels should (and
shouldn’t) be built

E.g., Microkernels should not be portable

23

2424

Paper argues for the following

Only put in anything that if moved out prohibits
functionality

Assumes:
We require security/protection

We require a page-based VM

Subsystems should be isolated from one another

Two subsystems should be able to communicate
without involving a third

24

13

2525

Abstractions provided by L3
Address spaces (to support protection/separation)

Grant, Map, Flush

Handling I/O

Threads and IPC
Threads: represent the address space

End point for IPC (messages)

Interrupts are IPC messages from kernel
Microkernel turns hardware interrupts to thread events

Unique ids (to be able to identify address spaces,
threads, IPC end points etc..)

25

2626

Debunking performance issues
What are the performance issues?
1. Switching overhead

Kernel user switches

Address space switches

Threads switches and IPC

2. Memory locality loss
TLB

Caches

26

14

2727

Mode switches
System calls (mode switches) should not be
expensive

Called context switches in the paper

Show that 90% of system call time on Mach
is “overhead”

What? Paper doesn’t really say
Could be parameter checking, parameter passing,
inefficiencies in saving state…

L3 does not have this overhead

27

2828

Thread/address space switches

If TLBs are not tagged, they must be flushed
Today? x86 introduced tags but they are not utilized

If caches are physically indexed, no loss of
locality

No need to flush caches when address space
changes

Customize switch code to HW

Empirically demonstrate that IPC is fast

28

15

2929

L2, L3, and

main memory

Review: End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

29

3030

Tricks to reduce the effect
TLB flushes due to AS switch could be
very expensive

Since microkernel increases AS switches, this
is a problem

Tagged TLB? If you have them

Tricks with segments to provide isolation
between small address spaces

Remap them as segments within one address
space

Avoid TLB flushes

30

16

3131

Memory effects
Chen and Bershad showed memory behavior on
microkernels worse than monolithic

Paper shows this is all due to more cache misses

Are they capacity or conflict misses?
Conflict: could be structure

Capacity: could be size of code

Chen and Bershad also showed that self-interference more
of a problem than user-kernel interference

Ratio of conflict to capacity much lower in Mach
 too much code, most of it in Mach

31

3232

Conclusion
Its an implementation issue in Mach

Its mostly due to Mach trying to be portable

Microkernel should not be portable
It’s the hardware compatibility layer

Example: implementation decisions even between
486 and Pentium are different if you want high
performance

Think of microkernel as microcode

32

17

3333

Conclusions
Simplicity and limited exokernel primitives can
be implemented efficiently

Hardware multiplexing can be fast and efficient

Traditional abstractions can be implemented at
the application level

Applications can create special purpose
implementations by modifying libraries

33

