OS Extensibility: Spin,
Exo-kernel and L4

R

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C Ri“VE“R”rS‘IIﬁE

Extensibility
> Problem: How?

» Add code to OS

how to preserve isolation?

... without killing performance?
> What abstractions?

» General principle: mechanisms in OS, policies
through the extensions

What mechanisms to expose?

UNIVERSITY OF CALIFORNIA, RIVERSIDE U ﬁ RiVER”rS\IIﬁE

Spin Approach to extensibility

» Co-location of kernel and extension
» Avoid border crossings
> But what about protection?

> Language/compiler forced protection
» Strongly typed language

» Protection by compiler and run-time
» Cannot cheat using pointers
» Logical protection domains

» No longer rely on hardware address spaces to enforce
protection — no boarder crossings

> Dynamic call binding for extensibility

UNIVERSITY OF CALIFORNIA, RIVERSIDE U E; RiVER”rS‘IIﬁE

ExoKernel

UNIVERSITY OF CALIFORNIA, RIVERSIDE U ﬁ RiVER”rS\IIﬁE

Motivation for Exokernels

> Traditional centralized resource management
cannot be specialized, extended or replaced

> Privileged software must be used by all
applications

> Fixed high level abstractions too costly for
good efficiency

> Exo-kernel as an end-to-end argument

UNIVERSITY OF CALIFORNIA, RIVERSIDE U E; RiVER”rS‘IIﬁE

Exokernel Philosophy

» Expose hardware to libraryOS
> Not even mechanisms are
implemented by exo-kernel
» They argue that mechanism is policy

» Exo-kernel worried only about
protection not resource
management

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RIVE RS I D E

Design Principles

» Track resource ownership

» Ensure protection by guarding resource
usage

» Revoke access to resources

» Expose hardware, allocation, names and
revocation

» Basically validate binding, then let library
manage the resource

UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RiVER”rS‘IIﬁE

Exokernel Architecture

Mozaic Applications Bames—Hut

Library operating systems

Exokernel Secure bindings
Hardware | Frame I:luf'ﬁ:.r- TLE Metwork Memory Disk

UNIVERSITY OF CALIFORNIA, RIVERSIDE U ﬁ RiVER”rS\IIﬁE

Separating Security from Management

» Secure bindings — securely bind machine
resources

» Visible revocation — allow libOSes to
participate in resource revocation

> Abort protocol — break bindings of
uncooperative libOSes

UNIVERSITY OF CALIFORNIA, RIVERSIDE U E; RiVER”rS‘IIﬁE

Secure Bindings

» Decouple authorization from use
» Authorization performed at bind time

» Protection checks are simple operations
performed by the kernel

> Allows protection without understanding

» Operationally — set of primitives needed for
applications to express protection checks

UNIVERSITY OF CALIFORNIA, RIVERSIDE l- ﬁ RiVER”rS\IIﬁE

Example resource

> TLB Entry
» Virtual to physical mapping done by library
» Binding presented to exo-kernel
» Exokernel puts it in hardware TLB

» Process in library OS then uses it without exo-
kernel intervention

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

Implementing Secure Bindings

» Hardware mechanisms: TLB entry, Packet
Filters

» Software caching: Software TLB stores

» Downloaded Code: invoked on every
resource access or event to determine
ownership and kernel actions

UNIVERSITY OF CALIFORNIA, RIVERSIDE l- ﬁ RiVER”rS\IIﬁE

Downloaded Code Example: (DPF)
Downloaded Packet Filter

> Eliminates kernel crossings

» Can execute when application is not
scheduled

> Written in a type safe language and compiled
at runtime for security

» Uses Application-specific Safe Handlers
which can initiate a message to reduce round
trip latency

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

Visible Resource Revocation
» Traditionally resources revoked invisibly

> Allows libOSes to guide de-allocation and
have knowledge of available resources — ie:
can choose own ‘victim page’

» Places workload on the libOS to organize
resource lists

UNIVERSITY OF CALIFORNIA, RIVERSIDE l- ﬁ RiVER”rS\IIﬁE

Abort Protocol

» Forced resource revocation
» Uses ‘repossession vector’
> Raises a repossession exception

> Possible relocation depending on state of
resource

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

Managing core services

> Virtual memory:

» Page fault generates an upcall to the library OS
via a registered handler

» LibOS handles the allocation, then presents a
mapping to be installed into the TLB providing a
capability

» Exo-kernel installs the mapping

» Software TLBs

UNIVERSITY OF CALIFORNIA, RIVERSIDE l- ﬁ RiVER”rS\IIﬁE

Managing CPU

> Atime vector that gets allocated to the different
library operating systems
> Allows allocation of CPU time to fit the application

> Revokes the CPU from the OS using an upcall

» The libOS is expected to save what it needs and give
up the CPU

» If not, things escalate
> Can install revocation handler in exo-kernel

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

Putting it all together

» Lets consider an exo-kernel with
downloaded code into the exo-kernel

» When normal processing occurs, Exo-
kernel is a sleeping beauty

» When a discontinuity occurs (traps, faults,
external interrupts), exokernel fields them

» Passes them to the right OS (requires book-
keeping) — compare to SPIN?

> Application specific handlers

UNIVERSITY OF CALIFORNIA, RIVERSIDE l- ﬁ RiVER”rS\IIﬁE

Evaluation
» Again, a full immplementation
» How to make sense from the quantitative
results?

Absolute numbers are typically meaningless
given that we are part of a bigger system
» Trends are what matter

> Again, emphasis is on space and time

Key takeaway—> at least as good as a
monolithic kernel

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

Questions and conclusions

» Downloaded code — security?
Some mention of SFI and little languages
SPIN is better here?
» SPIN vs. Exokernel
Spin—extend mechanisms; some abstractions still exist
Exo-kernel: securely expose low-level primitives (primitive vs.
mechanism?)
» Microkernel vs. exo-kernel
Much lower interfaces exported
Argue they lead to better performance
Of course, less border crossing due to downloadable code

10

UNIVERSITY OF CALIEQRNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RIVE Rs I D E

On Microkernel
construction (L3/4)

UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RiVER”rS‘IIﬁE

L4 microkernel family

» Successful OS with different offshoot
distributions

Commercially successful

» OKLabs OKL4 shipped over 1.5 billion installations by
2012
> Mostly qualcomm wireless modems

» But also player in automative and airborne entertainment
systems

» Used in the secure enclave processor on Apple’s A7 chips
> All iOS devices have it! 100s of millions

11

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Big picture overview

» Conventional wisdom at the time was:
Microkernels offer nice abstractions and should be flexible

...but are inherently low performance due to high cost of
border crossings and IPC
...because they are inefficient they are inflexible

» This paper refutes the performance argument

Main takeaway: its an implementation issue

» ldentifies reasons for low performance and shows by construction that
they are not inherent to microkernels
10-20x improvement in performance over Mach

» Several insights on how microkernels should (and
shouldn’t) be built
E.g., Microkernels should not be portable

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

Paper argues for the following

Only put in anything that if moved out prohibits

functionality

Assumes:
> We require security/protection
> We require a page-based VM
Subsystems should be isolated from one another

Two subsystems should be able to communicate
without involving a third

12

UNIVERSITY OF CALIFORNIA, RIVERSIDE U ﬁ RiVER”rS\IIﬁE

Abstractions provided by L3

» Address spaces (to support protection/separation)
» Grant, Map, Flush
Handling 1/0

> Threads and IPC
» Threads: represent the address space
End point for IPC (messages)

Interrupts are IPC messages from kernel
» Microkernel turns hardware interrupts to thread events

» Unique ids (to be able to identify address spaces,
threads, IPC end points etc..)

UNIVERSITY OF CALIFORNIA, RIVERSIDE U E; RiVER”rS‘IIﬁE

Debunking performance issues

> What are the performance issues?
1. Switching overhead
» Kernel user switches
» Address space switches
» Threads switches and IPC
2. Memory locality loss
» TLB
» Caches

13

UNIVERSITY OF CALIFORNIA, RIVERSIDE U ﬁ RiVER”rS\IIﬁE

Mode switches

» System calls (mode switches) should not be
expensive
» Called context switches in the paper

> Show that 90% of system call time on Mach
is “overhead”

> What? Paper doesn’t really say

» Could be parameter checking, parameter passing,
inefficiencies in saving state...

> L3 does not have this overhead

UNIVERSITY OF CALIFORNIA, RIVERSIDE U E; RiVER”rS‘IIﬁE

Thread/address space switches

» If TLBs are not tagged, they must be flushed
> Today? x86 introduced tags but they are not utilized
» If caches are physically indexed, no loss of
locality

> No need to flush caches when address space
changes

» Customize switch code to HW
» Empirically demonstrate that IPC is fast

14

UNIVERSITY OF CALIFORNIA, RIVERSIDE

32/64

Result

L2, L3, and
main memory

L1
miss

L1
hit

L1 d-cache
(64 sets, 8 lines/set)

TLB
hit

40 12 40 6] 6
1 Physical
CR3 address —I_—
(PA)
Page tables 29

UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RiVER”rS‘IIﬁE

Tricks to reduce the effect

» TLB flushes due to AS switch could be
very expensive
> Since microkernel increases AS switches, this
is a problem
Tagged TLB? If you have them

Tricks with segments to provide isolation

between small address spaces

» Remap them as segments within one address
space

» Avoid TLB flushes

UNIVERSITY OF CALIFORNIA, RIVERSIDE l- ﬁ RiVER”rS\IIﬁE

Memory effects

» Chen and Bershad showed memory behavior on
microkernels worse than monolithic
» Paper shows this is all due to more cache misses

» Are they capacity or conflict misses?
Conflict: could be structure
Capacity: could be size of code
» Chen and Bershad also showed that self-interference more
of a problem than user-kernel interference
» Ratio of conflict to capacity much lower in Mach
» > too much code, most of it in Mach

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

Conclusion
» Its an implementation issue in Mach
» Its mostly due to Mach trying to be portable

> Microkernel should not be portable
» It's the hardware compatibility layer

Example: implementation decisions even between
486 and Pentium are different if you want high
performance

Think of microkernel as microcode

16

UCRIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Conclusions

> Simplicity and limited exokernel primitives can
be implemented efficiently

> Hardware multiplexing can be fast and efficient

» Traditional abstractions can be implemented at
the application level

> Applications can create special purpose
implementations by modifying libraries

17

