Advanced Operating Systems
(CS 202)

Extensible Operating Systems

R

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C Ri“VE“R”rS‘IIﬁE

Extensibility

> What do we mean by extensibility?

» Can you give a few examples?

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C Rivtﬁg\llﬁﬁ

OS as library (DOS-like)

OS Services and Device drivers

Hardware, managed by OS

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C Rivtﬁg"lﬁﬁ

Monolithic Kernel

— 7

OS Services and Device drivers

Hardware, managed by OS

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C Rivtﬁg\llﬁﬁ

Micro-kernel

Memory
manager CPU
scheduler
Micro-kernel

Hardware, managed by OS

UNIVERSITY OF CALIFORNIA, RIVERSIDE

How expensive are border crossings?

» Procedure call: save some general purpose registers
and jump
» Mode switch:
Trap or call gate overhead
» Nowadays syscall/sysreturn
Switch to kernel stack
Switch some segment registers
» Context switch?
Change address space
This could be expensive; flush TLB, ...

UNIVERSITY OF CALIFORNIA, RIVERSIDE l- ﬁ RiVER”rS\IIﬁE

Summary

» DOS-like structure:
» good performance and extensibility
> Bad protection

> Monolithic kernels:
» Good performance and protection
» Bad extensibility

> Microkernels
» Good protection and extensibility
> Bad performance!

UNIVERSITY OF CALIFORNIA, RIVERSIDE L Q RiVER”rS‘IIﬁE

How do we address extensibility nowadays?
> Device Drivers

> Browser Plugins Extensions
» Language Runtime (e.g., JavaScript)

» Software Fault Isolation

UNIVERSITY OF CALIFORNIA, RIVERSIDE U ﬁ RiVER”rS\IIﬁE

What should an extensible OS do?

> It should be thin, like a micro-kernel
» Only mechanisms (or even less?)
> no policies; they are defined by extensions
» Fast access to resources, like DOS
Eliminate border crossings
» Flexibility without sacrificing protection or
performance

» Basically, fast, protected and flexible

UNIVERSITY OF CALIFORNIA, RIVERSIDE U E; RiVER”rS‘IIﬁE

Spin Approach to extensibility

» Co-location of kernel and extension
> Avoid border crossings
> But what about protection?

» Language/compiler forced protection
» Strongly typed language

> Protection by compiler and run-time

» Cannot cheat using pointers

Logical protection domains

> No longer rely on hardware address spaces to enforce
protection — no boarder crossings

» Dynamic call binding for extensibility

UNIVERSITY OF CALIEQRNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RIVE Rs I D E

SPIN
mechanisms/Toolbox

UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RiVER”rS‘IIﬁE

Logical protection domains

> Modula-3 safety and encapsulation mechanisms
- Type safety, automatic storage management
» Objects, threads, exceptions and generic interfaces
» Fine-grained protection of objects using
capabilities. An object can be:
> Hardware resources (e.g., page frames)
Interfaces (e.g., page allocation module)
»Collection of interfaces (e.g., full VM)

» Capabilities are language supported pointers

UNIVERSITY OF CALIFORNIA, RIVERSIDE

= = 8= PN R
Logical protecticc ocn.:..
TYPE T <: REFANY; (* Domain.T is opaque ¥)
? Create: PROCEDURE Create(coff:CoffFile.T):T;

ege e . (* Returns a domain created from the specified object
> |n|t|a|IZe Wlth Ot file (‘‘coff’’ is a standard object file format). *)

PROCEDURE CreateFromModule () :T;
(* Create a domain containing interfaces defined by the

calling module. This function allows modules to
> Resolve' name and export themselves at runtime. *)

PROCEDURE Resolve (source, target: T);
b Names are resc (* Resolve any undefined ’symhols in the target domain
against any exported symbols from the source.*)
» Once resolvec
PROCEDURE Combine (dl, d2: T):T;

(* Create a new aggregate domain that exports the
interfaces of the given domains. *)

» Combine END Domain.
» To create an aggregate domain

» This is the key to spin — protection, extensibility and
performance

UNIVERSITY OF CALIFORNIA, RIVERSIDE U E; RIVE RS I DE

Protection Model (l)

> All kernel resources are referenced by
capabilities [tickets]

> SPIN implements capabilities directly through
the use of pointers

» Compiler prevents pointers to be forged or
dereferenced in a way inconsistent with its type
at compile time:
> No run time overhead for using a pointer

UNIVERSITY OF CALIEQRNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RIVE Rs I D E

Protection Model (ll)

> A pointer can be passed to a user-level
application through an externalized
reference:

Index into a per-application table of safe
references to kernel data structures

> Protection domains define the set of names
accessible to a given execution context

UNIVERSITY OF CALIFORNIA, RIVERSIDE U G RiVER”rS‘IIﬁE

CPU
scheduler
Memory
manager
Memory CPU
manager scheduler

Hardware, managed by OS

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Spin Mechanisms for Events

» Spin extension model is based on events and handlers
Which provide for communication between the base and the
extensions

» Events are routed by the Spin Dispatcher to handlers

> Handlers are typically extension code called as a procedure by
the dispatcher
> One-to-one, one-to-many or many-to-one
> All handlers registered to an event are invoked
» Guards may be used to control which handler is used

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Event example

Ether.PktArrived

Handler

Event ——

ATM.PktArrived

Lance
device driver

Fore
device driver

Figure 5: This figureshows a protocol stack that routes incoming network
packets to application-specific endpoinis within the kernel. Ovals represent
events raised to route control to handlers, which are represented by boxes.
Handlers impl the protocol correspending to their label.

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Putting it All

together

UNIVERSITY OF CALIFORNIA, RIVERSIDE

™ _ Ff_ _ 14 AN _ __ _ -—_——_— T _ _ _ " _ A~ m™iAl

INTERFACE PhysAddr;
TYPE T <: REFANY; (* PhysAddr.T is opaque *)
PROCEDURE Allocate (size: Size; attrib: Attrib): T;
(* Allocate some physical memory with
particular attributes. *)
PROCEDURE Deallocate (p: T);
PROCEDURE Reclaim(candidate: T): T;
(* Request to reclaim a candidate page.
Clients may handle this event to
nominate alternative candidates. *)

END PhysAddr.

INTERFACE VirtAddr;
TYPE T <: REFANY; (* VirtAddr.T is opague *)
PROCEDURE Allocate (size: Size; attrib: Attrib): T:

PROCEDURE Deallocate (v: T);
END VirtAddr.

INTERFACE Translation;
IMBORT PhysAddr, VirtAddr;

TYPE T <: REFANY; (* Translation.T is opaque *)

PROCEDURE Create (): T;
PROCEDURE Destroy(context: T);
(* Create or destroy an addressing context ¥)

PROCEDURE AddMapping (context: T; v: VirtAddr.T;

p: PhysAddr.T; prot: Protection);

(* Add [v,p] into the named translation context
with the specified protection. *)

PROCEDURE RemoveMapping (context: T; v: VirtAddr.T);

PROCEDURE ExamineMapping(context: T;
v: VirtAddr.T): Protection;

(* A few events raised during *)
(* illegal translations *)
PROCEDURE PageNotPresent(v: T);
PROCEDURE BadAddress(v: T);
PROCEDURE ProtectionFault (v: T);

END Translation.

g,

Figure 3: The interfaces for ing physical

, virtual addy , and I

» Page fault, access fault, bad address

10

UNIVERSITY OF CALIFORNIA, RIVERSIDE

INTERFACE

CPU -7

PROCEDURE
(* Signal

) S p PROCEDURE

(* Signal

c PROCEDURE
(* Signal
should

PROCEDURE
(* signal

Strand;
REFANY; (* Strand.T is opaque *)

Block(s:T);
to a scheduler that s is not runnable. *)

Unblock(s: T);
to a scheduler that s is runnable. *)

Checkpoint (s: T):
that s is being descheduled and that it
save any processor state required for

subsequent rescheduling. *)

Resume(s: T);
that s is being placed on a processor and

) EV' that it should reestablish any state saved during
a prior call to Checkpoint. *)

END Strand.

Figure 4:

The Strand Interface. This interface describes the schedul-

ing events affecting control flow that can be raised within the kernel.
> Sp Application-specific schedulers and thread packages install handlers on
these events, which are raised on behalf of particular strands. A trusted

thread pack

and scheduler provide default impl ions of these op-

3 | | erations, and ensure that extensions do not install handlers on strands for ;kage
which they do not possess a capability.

UNIVERSITY OF CALIFORNIA, RIVERSIDE

» In the OS

v

kernel

Experiments
> Don’t worry, | wont go through them

community, you have to

demonstrate what you are proposing

» They built SPIN, extensions and applications that
use them
Focus on performance and size

» Reasonable size, and substantial performance
advantages even relative to a mature monolithic

11

UNIVERSITY OF CALIFORNIA, RIVERSIDE U ﬁ RiVER”rS\IIﬁE

Conclusions
> Extensibility, protection and performance

» Extensibility and protection provided by
language/compiler features and run-time checks
» Instead of hardware address spaces
> ...which gives us performance—no border crossing

> Who are we trusting? Consider application and
Spin

> How does this compare to Exo-kernel?

12

