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Extensibility

> What do we mean by extensibility?

» Can you give a few examples?
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OS as library (DOS-like)

OS Services and Device drivers

Hardware, managed by OS
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Monolithic Kernel
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OS Services and Device drivers

Hardware, managed by OS
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Micro-kernel

Memory
manager CPU
scheduler
Micro-kernel

Hardware, managed by OS
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How expensive are border crossings?

» Procedure call: save some general purpose registers
and jump
» Mode switch:
Trap or call gate overhead
» Nowadays syscall/sysreturn
Switch to kernel stack
Switch some segment registers
» Context switch?
Change address space
This could be expensive; flush TLB, ...
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Summary

» DOS-like structure:
» good performance and extensibility
> Bad protection

> Monolithic kernels:
» Good performance and protection
» Bad extensibility

> Microkernels
» Good protection and extensibility
> Bad performance!
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How do we address extensibility nowadays?
> Device Drivers

> Browser Plugins Extensions
» Language Runtime (e.g., JavaScript)

» Software Fault Isolation
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What should an extensible OS do?

> It should be thin, like a micro-kernel
» Only mechanisms (or even less?)
> no policies; they are defined by extensions
» Fast access to resources, like DOS
Eliminate border crossings
» Flexibility without sacrificing protection or
performance

» Basically, fast, protected and flexible
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Spin Approach to extensibility

» Co-location of kernel and extension
> Avoid border crossings
> But what about protection?

» Language/compiler forced protection
» Strongly typed language

> Protection by compiler and run-time

» Cannot cheat using pointers

Logical protection domains

> No longer rely on hardware address spaces to enforce
protection — no boarder crossings

» Dynamic call binding for extensibility
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SPIN
mechanisms/Toolbox
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Logical protection domains

> Modula-3 safety and encapsulation mechanisms
- Type safety, automatic storage management
» Objects, threads, exceptions and generic interfaces
» Fine-grained protection of objects using
capabilities. An object can be:
> Hardware resources (e.g., page frames)
Interfaces (e.g., page allocation module)
»Collection of interfaces (e.g., full VM)

» Capabilities are language supported pointers
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TYPE T <: REFANY; (* Domain.T is opaque ¥)
? Create: PROCEDURE Create(coff:CoffFile.T):T;

ege e . (* Returns a domain created from the specified object
> |n|t|a|IZe Wlth Ot file (‘‘coff’’ is a standard object file format). *)

PROCEDURE CreateFromModule () :T;
(* Create a domain containing interfaces defined by the

calling module. This function allows modules to
> Resolve' name and export themselves at runtime. *)

PROCEDURE Resolve (source, target: T);
b Names are resc (* Resolve any undefined ’symhols in the target domain
against any exported symbols from the source.*)
» Once resolvec
PROCEDURE Combine (dl, d2: T):T;

(* Create a new aggregate domain that exports the
interfaces of the given domains. *)

» Combine END Domain.
» To create an aggregate domain

» This is the key to spin — protection, extensibility and
performance
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Protection Model (l)

> All kernel resources are referenced by
capabilities [tickets]

> SPIN implements capabilities directly through
the use of pointers

» Compiler prevents pointers to be forged or
dereferenced in a way inconsistent with its type
at compile time:
> No run time overhead for using a pointer
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Protection Model (ll)

> A pointer can be passed to a user-level
application through an externalized
reference:

Index into a per-application table of safe
references to kernel data structures

> Protection domains define the set of names
accessible to a given execution context
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CPU
scheduler
Memory
manager
Memory CPU
manager scheduler

Hardware, managed by OS
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Spin Mechanisms for Events

» Spin extension model is based on events and handlers
Which provide for communication between the base and the
extensions

» Events are routed by the Spin Dispatcher to handlers

> Handlers are typically extension code called as a procedure by
the dispatcher
> One-to-one, one-to-many or many-to-one
> All handlers registered to an event are invoked
» Guards may be used to control which handler is used
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Event example

Ether.PktArrived

Handler

Event ——

ATM.PktArrived

Lance
device driver

Fore
device driver

Figure 5: This figureshows a protocol stack that routes incoming network
packets to application-specific endpoinis within the kernel. Ovals represent
events raised to route control to handlers, which are represented by boxes.
Handlers impl the protocol correspending to their label.
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Putting it All

together
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INTERFACE PhysAddr;
TYPE T <: REFANY; (* PhysAddr.T is opaque *)
PROCEDURE Allocate (size: Size; attrib: Attrib): T;
(* Allocate some physical memory with
particular attributes. *)
PROCEDURE Deallocate (p: T);
PROCEDURE Reclaim(candidate: T): T;
(* Request to reclaim a candidate page.
Clients may handle this event to
nominate alternative candidates. *)

END PhysAddr.

INTERFACE VirtAddr;
TYPE T <: REFANY; (* VirtAddr.T is opague *)
PROCEDURE Allocate (size: Size; attrib: Attrib): T:

PROCEDURE Deallocate (v: T);
END VirtAddr.

INTERFACE Translation;
IMBORT PhysAddr, VirtAddr;

TYPE T <: REFANY; (* Translation.T is opaque *)

PROCEDURE Create (): T;
PROCEDURE Destroy(context: T);
(* Create or destroy an addressing context ¥)

PROCEDURE AddMapping (context: T; v: VirtAddr.T;

p: PhysAddr.T; prot: Protection);

(* Add [v,p] into the named translation context
with the specified protection. *)

PROCEDURE RemoveMapping (context: T; v: VirtAddr.T);

PROCEDURE ExamineMapping(context: T;
v: VirtAddr.T): Protection;

(* A few events raised during *)
(* illegal translations *)
PROCEDURE PageNotPresent(v: T);
PROCEDURE BadAddress(v: T);
PROCEDURE ProtectionFault (v: T);

END Translation.

g,

Figure 3: The interfaces for ing physical

, virtual addy , and I

» Page fault, access fault, bad address
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INTERFACE

CPU -7

PROCEDURE
(* Signal

) S p PROCEDURE

(* Signal

c PROCEDURE
(* Signal
should

PROCEDURE
(* signal

Strand;
REFANY; (* Strand.T is opaque *)

Block(s:T);
to a scheduler that s is not runnable. *)

Unblock(s: T);
to a scheduler that s is runnable. *)

Checkpoint (s: T):
that s is being descheduled and that it
save any processor state required for

subsequent rescheduling. *)

Resume(s: T);
that s is being placed on a processor and

) EV' that it should reestablish any state saved during
a prior call to Checkpoint. *)

END Strand.

Figure 4:

The Strand Interface. This interface describes the schedul-

ing events affecting control flow that can be raised within the kernel.
> Sp Application-specific schedulers and thread packages install handlers on
these events, which are raised on behalf of particular strands. A trusted

thread pack

and scheduler provide default impl ions of these op-

3 | | erations, and ensure that extensions do not install handlers on strands for ;kage
which they do not possess a capability.
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» In the OS

v

kernel

Experiments
> Don’t worry, | wont go through them

community, you have to

demonstrate what you are proposing

» They built SPIN, extensions and applications that
use them
Focus on performance and size

» Reasonable size, and substantial performance
advantages even relative to a mature monolithic
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Conclusions
> Extensibility, protection and performance

» Extensibility and protection provided by
language/compiler features and run-time checks
» Instead of hardware address spaces
> ...which gives us performance—no border crossing

> Who are we trusting? Consider application and
Spin

> How does this compare to Exo-kernel?
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