
1

Advanced Operating Systems
(CS 202)

Extensible Operating Systems

22

Extensibility
What do we mean by extensibility?

Can you give a few examples?

2

2

33

OS as library (DOS-like)

3

Hardware, managed by OS

OS Services and Device drivers

Applications

44

Monolithic Kernel

4

Hardware, managed by OS

OS Services and Device drivers

Applications

What is the difference?

3

55

Micro-kernel

5

Hardware, managed by OS

Micro-kernel

Applications

File
System

Memory
manager CPU

scheduler

IPC, Address
Spaces, …

66

How expensive are border crossings?
Procedure call: save some general purpose registers
and jump

Mode switch:
Trap or call gate overhead

Nowadays syscall/sysreturn

Switch to kernel stack

Switch some segment registers

Context switch?
Change address space

This could be expensive; flush TLB, …

6

4

77

Summary

DOS-like structure:
good performance and extensibility

Bad protection

Monolithic kernels:
Good performance and protection

Bad extensibility

Microkernels
Good protection and extensibility

Bad performance!

7

88

How do we address extensibility nowadays?
Device Drivers

Browser Plugins Extensions

Language Runtime (e.g., JavaScript)

Software Fault Isolation

8

5

99

What should an extensible OS do?

It should be thin, like a micro-kernel
Only mechanisms (or even less?)

no policies; they are defined by extensions

Fast access to resources, like DOS
Eliminate border crossings

Flexibility without sacrificing protection or
performance

Basically, fast, protected and flexible

9

1010

Spin Approach to extensibility
Co-location of kernel and extension

Avoid border crossings

But what about protection?

Language/compiler forced protection
Strongly typed language

Protection by compiler and run-time

Cannot cheat using pointers

Logical protection domains
No longer rely on hardware address spaces to enforce
protection – no boarder crossings

Dynamic call binding for extensibility
10

6

1111

SPIN
mechanisms/Toolbox

11

1212

Logical protection domains

Modula-3 safety and encapsulation mechanisms
Type safety, automatic storage management

Objects, threads, exceptions and generic interfaces

Fine-grained protection of objects using
capabilities. An object can be:

Hardware resources (e.g., page frames)

Interfaces (e.g., page allocation module)

Collection of interfaces (e.g., full VM)

Capabilities are language supported pointers

12

7

1313

Logical protection domains -- mechanisms

Create:
Initialize with object file contents and export names

Resolve:
Names are resolved between a source and a target domain

Once resolved, access is at memory speeds

Combine
To create an aggregate domain

This is the key to spin – protection, extensibility and
performance

13

1414

Protection Model (I)

All kernel resources are referenced by
capabilities [tickets]

SPIN implements capabilities directly through
the use of pointers

Compiler prevents pointers to be forged or
dereferenced in a way inconsistent with its type
at compile time:

No run time overhead for using a pointer

8

1515

Protection Model (II)
A pointer can be passed to a user-level
application through an externalized
reference:

Index into a per-application table of safe
references to kernel data structures

Protection domains define the set of names
accessible to a given execution context

1616

Spin

16

Hardware, managed by OS

spin

File
System

Memory
manager

CPU
scheduler

IPC, Address
Spaces, …

Network

File
System

Memory
manager

CPU
scheduler

9

1717

Spin Mechanisms for Events
Spin extension model is based on events and handlers

Which provide for communication between the base and the
extensions

Events are routed by the Spin Dispatcher to handlers
Handlers are typically extension code called as a procedure by
the dispatcher

One-to-one, one-to-many or many-to-one
All handlers registered to an event are invoked

Guards may be used to control which handler is used

17

1818

Event example

18

10

1919

Putting it All
together

19

2020

Default Core services in SPIN
Memory management (of memory
allocated to the extension)

Physical address
Allocate, deallocate, reclaim

Virtual address
Allocate, deallocate

Translation
Create/destory AS, add/remove mapping

Event handlers
Page fault, access fault, bad address

20

11

2121

CPU Scheduling
Spin abstraction: strand

Semantics defined by extension

Event handlers
Block, unblock, checkpoint, resume

Spin global scheduler
Interacts with extension threads package

21

2222

Experiments
Don’t worry, I wont go through them

In the OS community, you have to
demonstrate what you are proposing

They built SPIN, extensions and applications that
use them

Focus on performance and size
Reasonable size, and substantial performance
advantages even relative to a mature monolithic
kernel

22

12

2323

Conclusions
Extensibility, protection and performance

Extensibility and protection provided by
language/compiler features and run-time checks

Instead of hardware address spaces

…which gives us performance—no border crossing

Who are we trusting? Consider application and
Spin

How does this compare to Exo-kernel?

23

