
CloudVisor: Retrofitting
Protection of Virtual Machines in
Multi-tenant Cloud with Nested

Virtualization

Fengzhe Zhang, Jin Chen, Haibo Chen, Binyu Zang

2011-10-24

System Research Group
Parallel Processing Institute

Fudan University
http://ppi.fudan.edu.cn/system_research_group

Multi-tenant Cloud

• Widely available public cloud

– Amazon EC2, RackSpace, GoGrid

• Infrastructure as a Service

– Computation resources are rented as Virtual

Machines

• To save cost, VMs from different users may run

side-by-side on the same platform

Hypervisor

VM VM
Control

VM

Multi-tenant Cloud Software Stack

• Pay-as-you-go

– Flexible

– Scalable

Can we simply trust public cloud?

Probably Not !

Problem #1: Curious/malicious
Administrator

Hypervisor

VM
Control

VM

Jack’s bank account
password = xyzxyz

most concerned issue:
“invisibly access unencrypted data in its facility”-

Gartner, 2008

Problem #1: Curious/malicious
Administrator

peeking in on emails, chats and Google
Talk call logs for several months before

the company discovered...

Problem #2: Large TCB for Cloud

0

2000

4000

6000

8000

10000

VMM Dom0 Kernel Tools TCB

K
LO

C
s

TCB Size of Xen System Xen 2.0

Xen 3.0

Xen 4.0

Hypervisor

Control
VM Trusted Computing Base

[Colp 2011]

monolithic virtualization stack
one point of penetration leads to full compromise

~9M LOC

Microsoft Windows® Azure™ Platform Privacy Statement, Mar 2011

Amazon AWS User Agreement, 2010

Result: Limited Security
Guarantees in Public Cloud

Data Encryption is not Enough

• Encryption is only good for static data storage
– Data never decrypted in the cloud

– Cloud is just used as online storage space

• As for computation cloud
– Data are involved in computation, such as web

services

– Data should be decrypted during computation

– Encryption is not enough in this case

– Note, computation cloud is more widely desired

Goal of CloudVisor

• Defend again curious or malicious cloud operators

– To ensure privacy and integrity of a user VM

• Be transparent to existing cloud infrastructure

– No or little modifications to virtualization stack (OS,

Hypervisor)

• Minimized TCB

– Easy to verify correctness (e.g., formal verification)

• Non-goals

– DOS

– Side-channel attacks

– Semantic attacks to VM services from network

Observation and Idea

• Key observation

– Live with a compromised virtualization stack

• Idea: separate security protection from VM hosting

– CloudVisor: another layer of indirection

• In charge of security protection of VMs

• Interposes between VMs and hypervisor

– Hypervisor (unmodified)

• VM multiplexing and management

• This separation results in

– Minimized TCB

– Hypervisor and CloudVisor separately designed and

evolved

CloudVisor Overview

Hypervisor

VM VM
Control

VM

CloudVisor

HW Security Chip

Bootstrap Uses Trusted Computing technology

CPU
states

Interpose control switches between
hypervisor and VM (i.e., VMexit), hides CPU
register states from the hypervisor

Memory
Pages

Interpose address translation from guest
physical address to host physical address,
disallow illegal mapping to VM memory

I/O data Whole VM image encryption
Transparent decrypt I/O data in CloudVisor
Network I/O not encrypted

VM Protection Approach

(in paper)

Bootstrapping Trust

• 2 basic Trusted Computing techniques

– Authenticated boot

– Remote attestation

TPM
Chip

CloudVisor

BIOS

GRUB

a
u

th
en

ti
ca

te
d

 b
o

o
t

User

sign(hash)hash

remote attestation

User can ensure a correct version of CloudVisor is running

Interposition with Nested
Virtualization

• CloudVisor is based on standard hardware

support for virtualization like VT-x, VT-d

– It can host only 1 hypervisor

• Hypervisor runs in un-privileged mode

• CloudVisor runs in most privileged mode

VM

1-on-1 Nested Virtualization
(Turtles, 2010)

Hypervisor

VM VM

Cloudvisor

Virtualization Preliminary: VT-
x

VM

Hypervisor

host mode

guest mode
VM entry VM exit

Ring 0

Ring 3

Interposition with CloudVisor

VM

Cloudvisor

host mode

guest mode
VM entry VM exit

Hypervisor

VM entry VM exit

Ring 0

Ring 3

VM Memory Isolation

• Goal: forbid hypervisor access to VM memory

• Rules:

– When a page is assigned to a VM, CloudVisor

changes the ownership of the page

– A memory page is only accessible to its owner

Memory Translation with EPT

Page
Table

Guest Virtual

Address

Guest Physical

Address

Extended
Page
Table Host Physical

Address

Extended Page Table BasePage Table Base

Memory access initiated from

CPU: address translated by MMU (Page Table and EPT)

Devices: address translated by IOMMU

Memory Isolation with EPT

VM

Cloudvisor

host mode

guest mode

Hypervisor Ring 0

Ring 3

EPT EPT

maintained by hypervisor
read-only to hypervisor

updates validated by Cloudvisor

maintained by Cloudvisor
invisible to hypervisor

Memory Isolation with EPT

• In EPT maintained by CloudVisor

– There’s no mapping to VM memory

– This guarantees a page is either mapped by

hypervisor or a VM, not both

• CloudVisor tracks the ownership of every page

– Encrypt unauthorized pages and store its hash

Implementing I/O Protection

• CloudVisor intercepts and parses disk I/O

request

– Programmed I/O, DMA

– Encrypt/decrypt data transparent to VM and

hypervisor

– Calculate hash to verify the integrity of the data (in

paper)

• Network I/O are not encrypted

– User VM should protect the transferred data by itself

Disk Read: Transparent Decryption

• 1. encrypted data loaded from disk to hypervisor

memory

• 2. hypervisor tries to copy data to I/O buffer in

VM memory, fails because EPT fault

• 3. traps into CloudVisor, CloudVisor decrypts the

data and copies it to corresponding I/O buffer in

VM memory

Impact on VM Operations

CloudVisor works with Save/Restore/Migration

VM save: transparently encrypted and hashed

VM restore: transparently decrypted and verified

Require key exchanges between two machines during

migration (Mao et al. 2006)

Transparent memory sharing (not supported)

Problem: each VM has different keys

Sol#1: use a common key for page sharing

Sol#2: provide only integrity protection for shared pages

Implementation

• Xen hypervisor

– Run unmodified Windows, Linux Virtual Machine

– ~200 LOC patch to Xen to reduce VMexit (Intel

platform only, Optional)

• Run on SMP and support SMP VMs

• 5.5K LOCs

– Intel TXT is used to further decrease code size

Performance Evaluation

• How much overhead does CloudVisor incur?

• What’s the source of overhead?

• Is CloudVisor scalable on multicore?

Test Environment

• Hardware: Dell R810

– 1.8 GHz 8-core Intel processor with VT-x, VT-d,

IOMMU, EPT, AES-NI and SR-IOV support

– 32 Gbyte memory

• Software:

– Xen-4.0.0 and XenLinux-2.6.31.13 as Domain0 kernel

– Debian-Linux with kernel 2.6.31 and Windows XP

with SP2, both are 64-bit version

Uniprocessor Performance

0

0.2

0.4

0.6

0.8

1

1.2 6.0%
0.2% 2.6% 1.9% 2.7%

N
o

rm
al

iz
e

d
 S

lo
w

d
o

w
n

 C
o

m
p

ar
e

d
 t

o
 X

e
n

Xen

CV

Average slowdown 2.7%

I/O Intensive Workload

4.5% 15.9% 16.7%

42.9%
41.4%

54.5%

0

100

200

300

400

500

600

1 2 4 8 16 32

Th
ro

u
gh

p
u

t

#Clients

Xen

CV

Payload
65%

I/O
27%

EPT
7%

Other
1%

Dbench Overhead Breakdown
(32 clients)

Source of Overhead

• Additional VMexits due to CloudVisor

– Although CloudVisor only intercepts a small set of

architectural events, VMexits caused by I/O buffer

copying is inevitable

• Cryptographic operations

– Encryption and hash

Multi-core scalability: KBuild

0

0.2

0.4

0.6

0.8

1

1.2

1/2 1 2 4 8

8.5% 6.0% 6.7%
3.4%

9.4%

N
o

rm
al

iz
e

d
 S

lo
w

d
o

w
n

 C
o

m
p

ar
e

d
 t

o
 X

e
n

#cores

Xen

CV

1/2 core means two processes on a core

Performance of Multiple VMs

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

6.0%
0.6% 3.7%

16.8%

N
o

rm
al

iz
e

d
 S

lo
w

d
o

w
n

 C
o

m
p

ar
e

d
 t

o
 X

e
n

#VMs

VM8

VM7

VM6

VM5

VM4

VM3

VM2

VM1

Related Work

• Nested Virtualization (Turtles, 2010)

– Support two layers of virtualization, no security protection

– Result in an even larger TCB

• Virtualization-based rootkits

– Bluepill, Subvirt

• VMM-based process protection

– CHAOS, Overshadow

• Efforts in improving or reducing virtualization layer

– NoHype: removal of virtualization layer

– NOVA: microkernel based VMM

• Virtualization-based attacks and defenses

Conclusion and Future Work

• Hypervisor can host VMs without knowing what’s

inside

– That means: hypervisor can provide services without

being trusted

• Hiding VM resources from the hypervisor can be

done with a small code base (~5.5 KLOC)

• Future: HW support of CloudVisor

– Reduce overhead and complexity

Thanks

Backup

Interposition with CloudVisor

VM

Cloudvisor
host mode

guest mode

VM entry VM exit

Hypervisor

VM entry VM exit

stack

stack

Prevent Unauthorized Access

hypervisor’s
Page Table

VMEXIT

encrypt
hash

Physical
Memory

CloudVisor

It is supposed that hypervisor will not use VM memory this way
just in rare cases

VM1

hypervisor’s
EPT

missing

Para-virtualization Support

• No visible architectural events, no interposition,

not supported

• PV drivers

– Memory sharing and event channel

– Not supported now, maybe doable

Optimization

• Network benchmarks are beneficial from directly

assigned network card

– Apache, memcached

• I/O data encryption/decryption uses hardware

crypto instructions

– Intel AES-NI

