
The Turtles Project:
Design and Implementation of Nested Virtualization

Muli Ben-Yehuda† Michael D. Day‡ Zvi Dubitzky† Michael Factor†

Nadav Har’El† Abel Gordon† Anthony Liguori‡ Orit Wasserman†

Ben-Ami Yassour†

†IBM Research – Haifa

‡IBM Linux Technology Center

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 1 / 22

What is nested x86 virtualization?

Running multiple unmodified
hypervisors
With their associated
unmodified VM’s
Simultaneously
On the x86 architecture
Which does not support
nesting in hardware. . .
. . . but does support a single
level of virtualization Hardware

Hypervisor

Guest
Hypervisor

Guest
OS

Guest
OS
Guest
OS

Guest
OS

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 2 / 22

Why?

Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)
To be able to run other hypervisors in clouds
Security (e.g., hypervisor-level rootkits)
Co-design of x86 hardware and system software
Testing, demonstrating, debugging, live migration of hypervisors

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 3 / 22

Why?

Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)
To be able to run other hypervisors in clouds
Security (e.g., hypervisor-level rootkits)
Co-design of x86 hardware and system software
Testing, demonstrating, debugging, live migration of hypervisors

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 3 / 22

Why?

Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)
To be able to run other hypervisors in clouds
Security (e.g., hypervisor-level rootkits)
Co-design of x86 hardware and system software
Testing, demonstrating, debugging, live migration of hypervisors

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 3 / 22

Why?

Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)
To be able to run other hypervisors in clouds
Security (e.g., hypervisor-level rootkits)
Co-design of x86 hardware and system software
Testing, demonstrating, debugging, live migration of hypervisors

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 3 / 22

Why?

Operating systems are already hypervisors (Windows 7 with XP
mode, Linux/KVM)
To be able to run other hypervisors in clouds
Security (e.g., hypervisor-level rootkits)
Co-design of x86 hardware and system software
Testing, demonstrating, debugging, live migration of hypervisors

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 3 / 22

Related work

First models for nested virtualization [PopekGoldberg74,
BelpaireHsu75, LauerWyeth73]
First implementation in the IBM z/VM; relies on architectural
support for nested virtualization (sie)
Microkernels meet recursive VMs [FordHibler96]: assumes we
can modify software at all levels
x86 software based approaches (slow!) [Berghmans10]
KVM [KivityKamay07] with AMD SVM [RoedelGraf09]
Early Xen prototype [He09]
Blue Pill rootkit hiding from other hypervisors [Rutkowska06]

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 4 / 22

Related work

First models for nested virtualization [PopekGoldberg74,
BelpaireHsu75, LauerWyeth73]
First implementation in the IBM z/VM; relies on architectural
support for nested virtualization (sie)
Microkernels meet recursive VMs [FordHibler96]: assumes we
can modify software at all levels
x86 software based approaches (slow!) [Berghmans10]
KVM [KivityKamay07] with AMD SVM [RoedelGraf09]
Early Xen prototype [He09]
Blue Pill rootkit hiding from other hypervisors [Rutkowska06]

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 4 / 22

Related work

First models for nested virtualization [PopekGoldberg74,
BelpaireHsu75, LauerWyeth73]
First implementation in the IBM z/VM; relies on architectural
support for nested virtualization (sie)
Microkernels meet recursive VMs [FordHibler96]: assumes we
can modify software at all levels
x86 software based approaches (slow!) [Berghmans10]
KVM [KivityKamay07] with AMD SVM [RoedelGraf09]
Early Xen prototype [He09]
Blue Pill rootkit hiding from other hypervisors [Rutkowska06]

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 4 / 22

Related work

First models for nested virtualization [PopekGoldberg74,
BelpaireHsu75, LauerWyeth73]
First implementation in the IBM z/VM; relies on architectural
support for nested virtualization (sie)
Microkernels meet recursive VMs [FordHibler96]: assumes we
can modify software at all levels
x86 software based approaches (slow!) [Berghmans10]
KVM [KivityKamay07] with AMD SVM [RoedelGraf09]
Early Xen prototype [He09]
Blue Pill rootkit hiding from other hypervisors [Rutkowska06]

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 4 / 22

Related work

First models for nested virtualization [PopekGoldberg74,
BelpaireHsu75, LauerWyeth73]
First implementation in the IBM z/VM; relies on architectural
support for nested virtualization (sie)
Microkernels meet recursive VMs [FordHibler96]: assumes we
can modify software at all levels
x86 software based approaches (slow!) [Berghmans10]
KVM [KivityKamay07] with AMD SVM [RoedelGraf09]
Early Xen prototype [He09]
Blue Pill rootkit hiding from other hypervisors [Rutkowska06]

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 4 / 22

Related work

First models for nested virtualization [PopekGoldberg74,
BelpaireHsu75, LauerWyeth73]
First implementation in the IBM z/VM; relies on architectural
support for nested virtualization (sie)
Microkernels meet recursive VMs [FordHibler96]: assumes we
can modify software at all levels
x86 software based approaches (slow!) [Berghmans10]
KVM [KivityKamay07] with AMD SVM [RoedelGraf09]
Early Xen prototype [He09]
Blue Pill rootkit hiding from other hypervisors [Rutkowska06]

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 4 / 22

Related work

First models for nested virtualization [PopekGoldberg74,
BelpaireHsu75, LauerWyeth73]
First implementation in the IBM z/VM; relies on architectural
support for nested virtualization (sie)
Microkernels meet recursive VMs [FordHibler96]: assumes we
can modify software at all levels
x86 software based approaches (slow!) [Berghmans10]
KVM [KivityKamay07] with AMD SVM [RoedelGraf09]
Early Xen prototype [He09]
Blue Pill rootkit hiding from other hypervisors [Rutkowska06]

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 4 / 22

What is the Turtles project?

Efficient nested virtualization for Intel x86 based on KVM
Multiple guest hypervisors and VMs: VMware, Windows, . . .
Code publicly available

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 5 / 22

What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast (see paper)

+ + =

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 6 / 22

What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast (see paper)

+ + =

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 6 / 22

What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast (see paper)

+ + =

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 6 / 22

What is the Turtles project? (cont’)

Nested VMX virtualization for nested CPU virtualization
Multi-dimensional paging for nested MMU virtualization
Multi-level device assignment for nested I/O virtualization
Micro-optimizations to make it go fast (see paper)

+ + =

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 6 / 22

Theory of nested CPU virtualization

Single-level architectural support (x86) vs. multi-level architectural
support (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)

Hardware

Host Hypervisor

Guest

Hardware

Host Hypervisor

Multiplexed on a single level Multiple logical levels

L0

L1

L2

L1

Guest
L2

Guest
L2

L0

Guest
L2L2

Guest
Hypervisor

Guest
Hypervisor GuestGuest

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 7 / 22

Theory of nested CPU virtualization

Single-level architectural support (x86) vs. multi-level architectural
support (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)

Hardware

Host Hypervisor

Guest

Hardware

Host Hypervisor

Multiplexed on a single level Multiple logical levels

L0

L1

L2

L1

Guest
L2

Guest
L2

L0

Guest
L2L2

Guest
Hypervisor

Guest
Hypervisor GuestGuest

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 7 / 22

Theory of nested CPU virtualization

Single-level architectural support (x86) vs. multi-level architectural
support (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)

Hardware

Host Hypervisor

Guest

Hardware

Host Hypervisor

Multiplexed on a single level Multiple logical levels

L0

L1

L2

L1

Guest
L2

Guest
L2

L0

Guest
L2L2

Guest
Hypervisor

Guest
Hypervisor GuestGuest

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 7 / 22

Theory of nested CPU virtualization

Single-level architectural support (x86) vs. multi-level architectural
support (e.g., z/VM)
Single level ⇒ one hypervisor, many guests
Turtles approach: L0 multiplexes the hardware between L1 and L2,
running both as guests of L0—without either being aware of it
(Scheme generalized for n levels; Our focus is n=2)

Hardware

Host Hypervisor

Guest

Hardware

Host Hypervisor

Multiplexed on a single level Multiple logical levels

L0

L1

L2

L1

Guest
L2

Guest
L2

L0

Guest
L2L2

Guest
Hypervisor

Guest
Hypervisor GuestGuest

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 7 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Nested VMX virtualization: flow

L0 runs L1 with VMCS0→1

L1 prepares VMCS1→2 and
executes vmlaunch
vmlaunch traps to L0

L0 merges VMCS’s:
VMCS0→1 merged with
VMCS1→2 is VMCS0→2

L0 launches L2

L2 causes a trap
L0 handles trap itself or
forwards it to L1

. . .
eventually, L0 resumes L2

repeat

Hardware

Host Hypervisor

Guest
OS

VMCS

Memory
Tables

VMCS

Memory
Tables

VMCS
Memory
Tables

L0

L1 L2

1-2 State

0-2 State0-1 State

Guest
Hypervisor

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 8 / 22

Exit multiplication makes angry turtle angry

To handle a single L2 exit, L1 does many things: read and write
the VMCS, disable interrupts, . . .
Those operations can trap, leading to exit multiplication
Exit multiplication: a single L2 exit can cause 40-50 L1 exits!
Optimize: make a single exit fast and reduce frequency of exits

…
…

…

…

L0

L1

L2

L3

Two
Levels

Three LevelsSingle
Level

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 9 / 22

Exit multiplication makes angry turtle angry

To handle a single L2 exit, L1 does many things: read and write
the VMCS, disable interrupts, . . .
Those operations can trap, leading to exit multiplication
Exit multiplication: a single L2 exit can cause 40-50 L1 exits!
Optimize: make a single exit fast and reduce frequency of exits

…
…

…

…

L0

L1

L2

L3

Two
Levels

Three LevelsSingle
Level

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 9 / 22

Exit multiplication makes angry turtle angry

To handle a single L2 exit, L1 does many things: read and write
the VMCS, disable interrupts, . . .
Those operations can trap, leading to exit multiplication
Exit multiplication: a single L2 exit can cause 40-50 L1 exits!
Optimize: make a single exit fast and reduce frequency of exits

…
…

…

…

L0

L1

L2

L3

Two
Levels

Three LevelsSingle
Level

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 9 / 22

Exit multiplication makes angry turtle angry

To handle a single L2 exit, L1 does many things: read and write
the VMCS, disable interrupts, . . .
Those operations can trap, leading to exit multiplication
Exit multiplication: a single L2 exit can cause 40-50 L1 exits!
Optimize: make a single exit fast and reduce frequency of exits

…
…

…

…

L0

L1

L2

L3

Two
Levels

Three LevelsSingle
Level

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 9 / 22

MMU virtualization via multi-dimensional paging

Three logical translations: L2 virt → phys, L2 → L1, L1 → L0

Only two tables in hardware with EPT:
virt → phys and guest physical→ host physical
L0 compresses three logical translations onto two hardware tables

SPT12

L2 virtual

L2 physical

L1 physical

L0 physical

GPT

L2 virtual

L2 physical

L1 physical

L0 physical

GPT

SPT02

Shadow on top of
shadow

SPT12

EPT01

L2 virtual

L2 physical

L1 physical

L0 physical

GPT

EPT02

EPT12

Multi-dimensional
paging

Shadow on top
of EPT

EPT01

baseline better best

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 10 / 22

Baseline: shadow-on-shadow

SPT12

L2 virtual

L2 physical

L1 physical

L0 physical

GPT

SPT02

Assume no EPT table; all hypervisors use shadow paging
Useful for old machines and as a baseline
Maintaining shadow page tables is expensive
Compress: three logical translations⇒ one table in hardware

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 11 / 22

Better: shadow-on-EPT

L2 virtual

L2 physical

L1 physical

L0 physical

SPT12

EPT01

GPT

Instead of one hardware table we have two
Compress: three logical translations⇒ two in hardware
Simple approach: L0 uses EPT, L1 uses shadow paging for L2

Every L2 page fault leads to multiple L1 exits

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 12 / 22

Best: multi-dimensional paging
L2 virtual

L2 physical

L1 physical

L0 physical

GPT

EPT02

EPT12

EPT01

EPT table rarely changes; guest page table changes a lot
Again, compress three logical translations⇒ two in hardware
L0 emulates EPT for L1

L0 uses EPT0→1 and EPT1→2 to construct EPT0→2

End result: a lot less exits!
Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 13 / 22

Introduction to I/O virtualization

Device emulation [Sugerman01]
GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Para-virtualized drivers [Barham03, Russell08]
GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Direct device assignment [Levasseur04,Yassour08]
GUEST

HOST

device
driver

Direct assignment best performing option
Direct assignment requires IOMMU for safe DMA bypass

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 14 / 22

Introduction to I/O virtualization

Device emulation [Sugerman01]
GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Para-virtualized drivers [Barham03, Russell08]
GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Direct device assignment [Levasseur04,Yassour08]
GUEST

HOST

device
driver

Direct assignment best performing option
Direct assignment requires IOMMU for safe DMA bypass

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 14 / 22

Introduction to I/O virtualization

Device emulation [Sugerman01]
GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Para-virtualized drivers [Barham03, Russell08]
GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Direct device assignment [Levasseur04,Yassour08]
GUEST

HOST

device
driver

Direct assignment best performing option
Direct assignment requires IOMMU for safe DMA bypass

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 14 / 22

Introduction to I/O virtualization

Device emulation [Sugerman01]
GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Para-virtualized drivers [Barham03, Russell08]
GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Direct device assignment [Levasseur04,Yassour08]
GUEST

HOST

device
driver

Direct assignment best performing option

Direct assignment requires IOMMU for safe DMA bypass

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 14 / 22

Introduction to I/O virtualization

Device emulation [Sugerman01]
GUEST

HOST

1

2

34

device
emulation

driver
device

driver
device

Para-virtualized drivers [Barham03, Russell08]
GUEST

HOST

driver

1

23

back−end

virtual
driver

front−end

virtualdevice
driver

Direct device assignment [Levasseur04,Yassour08]
GUEST

HOST

device
driver

Direct assignment best performing option
Direct assignment requires IOMMU for safe DMA bypass

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 14 / 22

Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1
hypervisor

physical
device

L0
hypervisor

L2 device
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via
platform IOMMU

How? L0 emulates an IOMMU for L1 [Amit10]
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 15 / 22

Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1
hypervisor

physical
device

L0
hypervisor

L2 device
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via
platform IOMMU

How? L0 emulates an IOMMU for L1 [Amit10]
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 15 / 22

Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1
hypervisor

physical
device

L0
hypervisor

L2 device
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via
platform IOMMU

How? L0 emulates an IOMMU for L1 [Amit10]
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 15 / 22

Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1
hypervisor

physical
device

L0
hypervisor

L2 device
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via
platform IOMMU

How? L0 emulates an IOMMU for L1 [Amit10]
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 15 / 22

Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1
hypervisor

physical
device

L0
hypervisor

L2 device
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via
platform IOMMU

How? L0 emulates an IOMMU for L1 [Amit10]
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 15 / 22

Multi-level device assignment

With nested 3x3 options for I/O virtualization (L2 ⇔ L1 ⇔ L0)
Multi-level device assignment means giving an L2 guest direct
access to L0’s devices, safely bypassing both L0 and L1

L1
hypervisor

physical
device

L0
hypervisor

L2 device
driver

MMIOs and PIOs

L0 IOMMUL1 IOMMU

Device DMA via
platform IOMMU

How? L0 emulates an IOMMU for L1 [Amit10]
L0 compresses multiple IOMMU translations onto the single
hardware IOMMU page table
L2 programs the device directly
Device DMA’s into L2 memory space directly

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 15 / 22

Experimental Setup

Running Linux, Windows,
KVM, VMware, SMP, . . .
Macro workloads:

kernbench
SPECjbb
netperf

Multi-dimensional paging?
Multi-level device assignment?
KVM as L1 vs. VMware as L1?

See paper for full experimental
details, more benchmarks and
analysis, including worst case
synthetic micro-benchmark

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 16 / 22

Macro: SPECjbb and kernbench

kernbench
Host Guest Nested NestedDRW

Run time 324.3 355 406.3 391.5
% overhead vs. host - 9.5 25.3 20.7
% overhead vs. guest - - 14.5 10.3

SPECjbb
Host Guest Nested NestedDRW

Score 90493 83599 77065 78347
% degradation vs. host - 7.6 14.8 13.4
% degradation vs. guest - - 7.8 6.3

Table: kernbench and SPECjbb results

Exit multiplication effect not as bad as we feared

Direct vmread and vmwrite (DRW) give an immediate boost

Take-away: each level of virtualization adds approximately the same
overhead!

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 17 / 22

Macro: multi-dimensional paging

Shadow on EPT
Multi−dimensional paging

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

kernbench specjbb netperf

Im
pr

ov
em

en
t r

ati
o

Impact of multi-dimensional paging depends on rate of page faults
Shadow-on-EPT: every L2 page fault causes L1 multiple exits
Multi-dimensional paging: only EPT violations cause L1 exits
EPT table rarely changes: #(EPT violations) << #(page faults)
Multi-dimensional paging huge win for page-fault intensive
kernbench

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 18 / 22

Macro: multi-level device assignment

throughput (Mbps)
%cpu

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1,000

native
single level guest

 emulation

single level guest

 virtio

single level guest

 direct access

nested guest
 emulation / emulation

nested guest
 virtio / emulation

nested guest
 virtio / virtio

nested guest
 direct / virtio

nested guest
 direct / direct

 0

 20

 40

 60

 80

 100

thr
oug

hpu
t (M

bps
)

%
cpu

Benchmark: netperf TCP_STREAM (transmit)
Multi-level device assignment best performing option
But: native at 20%, multi-level device assignment at 60% (x3!)
Interrupts considered harmful, cause exit multiplication

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 19 / 22

Macro: multi-level device assignment (sans interrupts)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (netperf -m)

L0 (bare metal)
L2 (direct/direct)
L2 (direct/virtio)

What if we could deliver device interrupts directly to L2?
Only 7% difference between native and nested guest!

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 20 / 22

Conclusions

Efficient nested x86
virtualization is challenging but
feasible
A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, . . .
Current overhead of 6-14%

Negligible for some
workloads, not yet for others
Work in progress—expect at
most 5% eventually

Code is available
It’s turtles all the way down

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 21 / 22

Conclusions

Efficient nested x86
virtualization is challenging but
feasible
A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, . . .
Current overhead of 6-14%

Negligible for some
workloads, not yet for others
Work in progress—expect at
most 5% eventually

Code is available
It’s turtles all the way down

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 21 / 22

Conclusions

Efficient nested x86
virtualization is challenging but
feasible
A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, . . .
Current overhead of 6-14%

Negligible for some
workloads, not yet for others
Work in progress—expect at
most 5% eventually

Code is available
It’s turtles all the way down

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 21 / 22

Conclusions

Efficient nested x86
virtualization is challenging but
feasible
A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, . . .
Current overhead of 6-14%

Negligible for some
workloads, not yet for others
Work in progress—expect at
most 5% eventually

Code is available
It’s turtles all the way down

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 21 / 22

Conclusions

Efficient nested x86
virtualization is challenging but
feasible
A whole new ballpark opening
up many exciting
applications—security, cloud,
architecture, . . .
Current overhead of 6-14%

Negligible for some
workloads, not yet for others
Work in progress—expect at
most 5% eventually

Code is available
It’s turtles all the way down

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 21 / 22

Questions?

Ben-Yehuda et al. (IBM Research) The Turtles Project: Nested Virtualization OSDI ’10 22 / 22

