Virtual Machine

e Virtual Machine Types
— System Virtual Machine: virtualize a machine
— Container: virtualize an OS
— Program Virtual Machine: virtualize a process
— Language Virtual Machine: virtualize a language environment

e Virtualization Techniques
— Paravirtualization (e.g., Xen)
— Binary rewriting with Ring Deprivation (e.g., VMWare)
— Dynamic Binary Translation (e.g., QEMU)
— Hardware Virtualization (e.g., KVM)
— System Call Level Virtualization (e.g., Linux Container)

System Virtual Machines: Outline

0 Applications and Usage Models

o Virtualization Methods and VMM Software Architecture

o Hardware Resource Virtualization

General principles of CPU virtualization
(with IA-32 / Intel VT* case study)

General principles of memory virtualization
(page-table shadowing case study)

General principles of 10 virtualization

0 Wrap-up

* Intel® Virtualization Technology (VT)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 3

System Virtual Machines (VMs)

App App || App VM, pha
L] (] - [e]] (] -]
Operating System Device A new Guest 0S, Guest 0S,
IDE || NIC | ... D
e | laverol | GoEE0 | | % ED
Physical Host Hardware \) Dé = ieﬂ m = é&ﬂ

“~Z>)

. VMM
Processors Memoary Graphics
§ — S _ Physical Host Hardware (ﬂ
JJIQL(:twork Storage Keyboard / Mouse % D D-? é
Without VMs: Single OS owns With VMs: Multiple OSes
all hardware resources share hardware resources

o A Virtual Machine Monitor (VMM) honors existing hardware
interfaces to create virtual copies of a complete hardware system

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 4

System VMs:
Applications and Usage Models

Basic System VM Capabilities

Workload Isolation

App;

OS

App,

-

HW

App, App,
0s, 0S,
HW, HW,

Workload Migration

K

App

0S
| vmM | [vmm
L HW, | [Hw, |

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

App, App,
oS, oS,
VMM
HW

App
0S
[vmm | [vmm
[HW, | [HW, |

¥

Workload Aggregation

Workload Embedding

App,
0S,

HW

App, App,
0S, 0S,
VMM
HW
31
h<
—
App;, App,
‘ 0s, 0S,
VMM
| HW

6

Traditional Server Applications

Service Migration

Mail Server
DB Server 08, Failure
0S, \ Isolation
UP Server S N\ y
DP Server Consz'l.;::iez:tion DB Server || MahSghrer | | Web Server || DB Server DB Server
08, 0S, 0S, 0S,
L Web Server d Z—
Sl 0S, VMM VMM
Server
Installations DP Server 4P | 8P / 16P Server DP Server

0 Manageability, Reliability, Availability
Server consolidation (Legacy OSes, “One App per OS”)
Staged deployment of OS upgrades, security patches, etc.
- Software failures confined to VM in which they occur
Service migration in “Virtual Data Center”

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

Emerging Client Applications

User-visible User-hidden
“Capability 0S” IT Management Stack

Untrusted Trusted
TR /W \ /
Apps Trusted User Apps IT Apps
Legacy OS Apps 0S Embedded OS
Trusted VMM VMM
Hardware Platform Hardware Platform

0 Security / Trusted Computing
VMs encapsulate untrusted legacy software
Create new environment for trusted code

o Client Partitioning

Extending server manageability features to the client
(e.g., "Embedded IT” client)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 8

Virtualization Methods
and
VMM Software Architecture

Anatomy of a Virtualized System

VM,

App

App

0S,

VM,

App

App

0S,

VMM

:

August 2005

Guest OSes

Virtualized
Hardware of VM

VM Monitor

Physical
HW Resources

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

10

Base VMM Requirements

o A VMM must be able to:

Protect itself from guest software
Isolate guest software stacks (OS + Apps) from one another
Present a (virtual) platform interface to guest software

a To achieve this, VMM must control access to:
CPUs, Memory and |I/O Devices

0 Ways that a VMM can share resources between VMs
Time multiplexing
Resource partitioning
Mediating hardware interfaces

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 11

(1) Time Multiplexing

VM,

M,

VMM

o VM is allowed direct access to resource for a period of time
before being context switched to another VM (e.g., CPU resource)

o Devil is in the details (will examine via a case study in later foils)

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

Processor

12

(2) Resource Partitioning

VM, VM,

VMM

\—/

Remap / Protection Mechanism

o VMM allocates “ownership” of phys resources to VMs
Typically involves some remapping and protection mechanism
Examples: physical memory, disk partitions, graphical display

August 2005

— -

Storage Memory Display

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

13

(3) Mediating Hardware Interfaces

VM,

VM,

VMM

|

HEEEN

;

Network Keyboard / Mouse

2 VMM retains direct ownership of physical resource
VMM hosts device driver as well as a virtualized device interface
Virtual interface can be same as or different than physical device

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 14

Putting it all Together...

VM, VM, VM, VM,
VMM
ANEEN §
Processor Storage Network Memory Keyboard / Mouse Display

o VMM applies all 3 sharing methods, as needed, to

create illusion of platform ownership to each guest OS

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

15

Some VMM Architecture Options

Hypervisor Architecture

VM,

Guest 0S
and Apps

VM,

Guest OS
and Apps

VM

n

Guest OS5
and Apps

Hypervisor

Device Models (Top)
Device Drivers (Bottom)

~§

1

Hosted Architecture

User-level VMM VMn
VM(J
Device
User
Apps U Feelels Guest OS
and Apps
Host OS
N
Device - Ring-0 VMM
Drivers ! “Kernel”

Host HW

a Hypervisor architecture
provides its own device
drivers and services

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

o Hosted architecture
leverages device drivers
and services of a “host 0S”

16

System Virtualization Case Studies
Processor Virtualization

CPU Virtualization: General Principles

VM, VM,

@ Processor

VMM

o To virtualize a CPU, a VMM must retain control over:

Accesses to privileged state (control regs, debug regs, etc.)
Exceptions (page faults, machine-check exceptions, etc.)
Interrupts and interrupt masking

Address translation (via page tables)

CPU access to I/O (via I/0O ports or MMIO)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

18

CPU Control via “Ring Deprivileging”

0 Ring Deprivileging Defined:

Guest OS kernel runs in a less privileged ring than usual
(i.e., above ring 0)

VMM runs in the most privileged ring 0

0 Goal of ring deprivileging is to prevent guest OS from:

Accessing privileged instructions / state
Modifying VMM code and data

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 19

Case Study: |A-32 CPU Virtualization

0 1A-32 Provides 4 Privilege Levels (Rings)

0 Segment-based Protections
Distinguish between all 4 rings

0 Page-based Protections

Separate only User and Supervisor modes
User mode: Code running in ring 3
Supervisor mode: Code running in rings 0, 1, or 2

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

20

Ring Deprivileging: Some Options

Guest Apps Ring 3

Without Ring The
Deprivileging “0/1/3”
. Model
Applications
OS Kernel With Ring Deprivileging
Guest Apps
Ring 3 The
Q Each,option has certain Guest 05 “0/3”
ros / cons e
p . . . VMM Ring O MOdeI
0 Will explore in the coming
foils...

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 21

Ring Compression

0 For the case of the 0/3 Model:

Guest OS and Apps run in the same ring (3)
Lose ring protections between guest OS / Apps
Two rings are “compressed” into one

o For the case of the 0/1/3 Model:

No ring compression, but...
Can’t use paging to protect VMM from guest OS
- VMM forced to use segment-based protections

o The following foils assume 0/1/3 Model...

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

22

IA-32 Virtualization Holes

Ring 3 Guest Exposetihat Guest
gues Non-frappi
APPS 055 yua | |APPS e
unning priv lleged fﬁ \
inring 1 stk SYSENTER
JEEEEEEE
Ring1 | Guest \ Guest SGDT
LSL CLI SLDT
PUSHCS/SS VERR st |4 | s
CALL VERW | 4
.
iy
Ringo [VMM 7/
Incorporate curre.nt ring # Unable to access “hidden”
In computation segmentregister state

August 2005

(Issues if executed in ring 1)

on VM context switch

Excessive Fauling

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

Mon-trapping
Reads of
Privileged

State

23

Addressing IA-32 “Virtualization Holes”

0 Method 1: Paravirtualization Techniques
Modify guest OS to work around virtualization holes

) . : Software-only
Requires ability to modify guest-OS source code

Methods

0 Method 2: Binary Translation or Patching
Modify guest OS binaries “on-the-fly”
Source code not required, but introduces new complexities
E.g., self-modifying code, translation caching, etc.
Some excessive trapping remains (e.g., SYSENTER case)

0 Method 3: Change Processor ISA
Re-architect instruction set to close virtualization holes by design
Example: New VT-x features for IA-32 processors...

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 24

Case Study: |A-32 Virtualization w/ VT-x

o VT-x is a new operating mode for IA-32 processors
Part of Intel® Virtualization Technology (VT)
Will be launched in Intel desktop CPUs in second half of 2005

o Operating mode enabled with VMXON / VMXOFF

o VT-x provides two new forms of operation:
Root Operation: Fully privileged, intended for VMM
Non-root Operation: Not fully privileged, intended for guest OS

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

25

Case Study: |A-32 Virtualization w/ VT-x

Guest software runs at

intended privilege level
. (no ring deprivileging)

Operation oS oS Ring 0
“Standard’ Root [—— __ “Standard”
——y —p
IA-32 VMXON QOperation VMM VMXOFF |A-32

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 26

VT-x Transitions: VM Entry and VM EXxit

0 VM Entry

VMM-to-guest transition

Initiated by new instructions: VMLAUNCH or VMRESUME
Enters non-root operation, loading guest state

Establishes key guest state in a single, atomic operation

a VM Exit Virtual Machines (VMs)

Guest-to-VMM transition
Caused by virtualization events Ring3 | | Apps ﬂ Apps
Enters root operation ~ ----eeeeooofo oo

Saves guest state Ring 0 0S 0S
Load VMM state

VM Entry VM Exit

Root VMRESUME
Operation VMM

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 27

VT-x Config Flexibility with the VMCS

2 VM Control Structure (VMCS) specifies CPU behavior
Holds guest state loaded / stored on VM entry / exit
- Accessed through a VMREAD /| VMWRITE interface

o Configuration of VMCS controls guest OS behavior
- VMM programs VMCS to cause VM exits on desired events

a VM exits possible on:

Privileged State: CRn, DRn, MSRs . -ﬁ
Sensitive Ops: CPUID, HLT, etc. N9 PPS

Paging events: #PF, INVLPG Ring 0 oS
Interrupts and Exceptions 4

o Other optimizations: Ve sy
Bitmaps, shadow registers, etc. YMREAD +—— ["'ymCS | (VMM)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 28

The VM Control Structure (VMCS)

VM -execution controls

Determines what operations

CRO, CR3, CR4, Exceptions, 10

VM-entry controls

load, how to transition

cause VM exits Ports, Interrupts, Pin Events, etc.

Saved on VM exits EIP,ESP, EFLAGS, IDTR, Segment
R Reloaded on VM entry Regs, Exitinfo, efc.

: CR3, EIP setto monitor entry point,

Host -state are a Loaded on VM exits EFLAGS hardooded, efc.
VM-exit controls Determines which state.tf) Example: MSR save -load list

save, load, how to fransition

Determines which state to Including injecting events

(interrupts, exceptions) on entry

o Each virtual CPU has a separate VMCS
For MP guest OS: separate VMCS for each “virtual CPU”

0 One VMCS per logical CPU is active at any given time

VMPTRLD instruction used to switch from one VMCS to another

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

29

Example VM-exit Causes

o Sensitive Instructions
CPUID - Reports processor capabilities
RDMSR, WRMSR — Read and write “Model-Specific Registers”
INVLPG - Invalidate TLB Entry
RDPMC, RDTSC - Read Perf Mon or Time-Stamp Counters
HLT, MWAIT, PAUSE - Indicate Guest OS Inactivity
VMCALL — New Instruction for Explicit Call to VMM

0 Accesses to Sensitive State
MOV DRx — Accesses to Debug Registers
MOV CRx — Accesses to Control Registers
Task Switch — Accesses to CR3

0 Exceptions and Asynchronous Events
Page Faults, Debug Exceptions, Interrupts, NMls, etc.

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

30

Some Example VM-EXxit Optimizations

a VT-x provides various optimizations to minimize
frequency of VM exits:

0 Shadow Registers and Masks

Reads from CRO and CR4 are satisfied from shadow registers
established by the VMM

VM exits can be conditional based on the specific bits modified
on a CR write (via a mask)

0 Execution-Control Bitmaps

VM exits can be selectively controlled via bitmaps
(e.g., for exceptions, 10-port accesses)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 31

Some Example VM-EXxit Optimizations (2)

o Time-Stamp Counter (TSC) Offsets

VMM can supply an offset that is applied to reads of the TSC
during guest execution

Eliminates VM exits on executions of RDTSC and reduces
distortions of “virtual time”

o External-interrupt Exiting

External interrupts cause VM exits
Interrupts never masked; no need for VM exits on CLI, STI, etc.

0 Optimized Interrupt Delivery
VMM can pend a “virtual interrupt” to a guest OS
VM exit occurs only when guest-OS interrupt window is open
Eliminates exits on most executions of CLI, STI, IRET, etc.

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 32

VM Entry: Event Injection

o Allows VMM to inject events on VM entry:

External interrupts
NMI
Exceptions (e.g., page fault)

0 Injection occurs after all guest state is loaded
a Performs all the normal IDT checks, etc.

0 Removes burden from VMM of emulating IDT, fault
checking, etc.

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

33

How VT-x Closes Virtualization Holes

MNew executon control
causes instruction fo VM exit

/

Ring 3 Guest Report tat No longer Guest / No longer need
(Non-Root | Apps guest0S need to trap Apps © trap these because
Operation) is running (EFLAGS.IF does CPUID relev ar:; r¢g|s|1‘er~a

atring 0 not control overnten are aorically
(as expected) interrupt masking) SYSENTER context swiiched
/ 1 on VM enfry fex it

Ring0 | Guest SGDT /
(Non-Root | OS tgf SIDT 7
Operation SLDT

P V| pusHcsiss verg T
CALL VERW
y
Root | VMM /
Operation C lean context switching

August 2005

Instructions report correct
values without requiring fraps
(no ring deprivileging)

supparted through VM entry / exit
and VMPTRLD operations
(no “hidden” state)

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

\

Excessive Faulling Avoided:
- SYSENTER functions correcty (no ring deprivileging)
- CLI'/ ST behavior optimized for pending virtual interrupts

34

System Virtualization Case Studies
Memory Virtualization

Mem Virtualization: General Principles

VM, VM,
cR3 [pr U = o [pr U
/ T [pT | L]
Guest OS L] Guest OS L
Vi {_'_'_'_'_'_&_'_'_f_'f:ﬁﬁéﬁéﬁ.@éiﬁéﬁéﬂ:f:-.(::i
Host
Hardware s Memory

0 Guest OS expects to control address translation
Allocates memory, page tables, manages TLB consistency, etc.

o But, VMM must have ultimate control over phys mem
Must map guest-physical address space to host-physical space

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 36

A Case Study: |A-32 Address Translation

CR3
PD _—7| PT — 7| F
- ; : Paging-related
D ‘ Control Registers
= PDE PTE T
Vs CRO | PE, PG, WP
VPN [PEN | Access PT —> F CR4 | PAE,PSE
‘\ Hardware sets ; Faulig
AlDBits ' -CR2
\\ ... - ~—— - Address
............................. ¥ re
PFN DA | . |uslRw| P |~

o |A-32 defines a hierarchical page-table structure
Defines linear-to-physical address translation
After page-table walk, page-table Entries (PTEs) are cached in a hardware TLB

o |A-32 address translation configured via control registers (CR3, etc.)

o Invalidation of PTEs signaled by OS via INVLPG instruction

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 37

Virtualizing Page Tables: Some Options

0 Option 1: Protect access to guest-OS page tables (PTs)
Use paging protections or binary translation to detect changes
Upon write access, substitute remapped phys address in PTE

- Also need VM exit on page-table reads (to report original PTE
value to guest OS)

o Option 2: Make a shadow copy of page tables
Guest OS freely changes its page tables
- VM exit occurs whenever CR3 changes
- VMM copies contents of guest page tables to active page tables
Copy operation is analogous to a TLB refill, hence: “Virtual TLB”

0 Details of option 2 follow
. As illustration of the use of VT-x...

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 38

Virtual TLB: Basic ldea |V ocuestrageabe

== o [pr [

g

pr [L]

Guest 0S 0

’I

R l___-____________'i
Vi VTLB l\ i
.
SRI—>pop Fer [
TLB Active e
Page Table ol —

0 VTLB = Processor TLB + Active Page Table

VMM initializes an empty VTLB and starts guest execution
When guest accesses memory, #PF occurs, and is sent to VMM
VMM copies needed translation (VTLB refill) and resumes guest

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

39

Virtual TLB: VT-x Setup

VMCS Set INVLPG exiing = 1
MOV CR3 and task swiich always cause exits

VM-executon Confrols

Ex ceplion bitmap ——y

Bitmap set fo cause exits on #PF exceplions

CRO guest / host mask

Guest / host masks for both CRO and CR4 set

CR4 guest/ host mask , :
to protect paging-related bits.

CRO read shadow
e Read shadows for CRO and CR4 set fo follow

guestvalues (may differ fom actual values)

0 VTLB algorithm programs VMX to cause VM exits on:
- Any writes to CR3 and relevant writes to CR0O and CR4
- Any page-fault (#PF) exceptions
- Any executions of INVLPG

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 40

Virtual TLB: Actions on CR3 Write

Guest

CR3

Guest OS A
writetoCR3 7
causes VMexit 1

Sonar

Host

0 CR3 write implies a TLB flush and page-table change
VMM notes new CR3 value (used later to walk guest PT)
VMM allocates a new PD page, with all invalid entries

I
vV s CR3
Put new CR3 value
into guest area of VMCS
and resume guest with
VMRESUME

PD

PDE

c:)c::c:lﬂ

VMM sets actual CPU CR3 register to point to the new PD page

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

41

Virtual TLB: Actions on a Page Fault

CR3

PD

August 2005

Guestpage =, (P\
faultcauses < PE {[0
a VM exit I
! \\
Guest roA
I g
]
Host ! ,‘
I CR3
v PD

Page fault reflected
back to guest using
‘vector-on-entry” with
VMRESUME

a VMM examines guest PT using faulting addr
If relevant PTE or PDE is invalid (P=0), then the #PF must be

reflected to the guest OS.

VMM configures VMCS for a “#PF vector-on-entry”
Then resumes guest execution with a VMRESUME

PDE

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

42

Virtual TLB: Actions on a Page Fault (2)

User-level read access...
CR3 PD PT F
Guest page Ras P G A DUSRWP
fault causes ! I p
I

PDE PTE [o] of o] 1] 1] 1

a VM exit F
1
!
Guest 3 A
Host ;‘ / : g
V’ PD v PT 4 v v :&
P G A DUSRWP \4
PDE | 1 PE [of | [1] [1f—fF

a If guest page table indicates sufficient access, then...
VMM allocates PT and copies guest PTE to the active PT
PFN of active PTE remapped to new value as per VMM policy
Other active PTE bits set as in guest PTE (e.g., P, G, U/S)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 43

Virtual TLB: Actions on INVLPG

CR3 PD PT —7| F
INVLPG causes P G A DUSRWP ‘
VM exit PDE_ |1 PEE [0 oJoJofof o~y
\ s
Guest \ _— , L
\ Invalidation of guest PT doesn’t cause VM exit
Host ‘\
N PD PT —> F
P G A DUSRWP
PDE |1 PEE [ofof of of of o]~—yF

0 Guest OS permitted to freely modify its page tables
Implies guest PTs and active PTs can become inconsistent
This is okay! (same as inconsistencies between PTs and TLB)
If guest reduces access, signals via INVLPG, causing a VM exit
VMM invalidates corresponding PTE in the active PT

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 44

Virtual TLB: A few other details

0 MP considerations (TLB shootdown)
Each logical processor has its own VTLB (just as it has a TLB)

TLB shootdown in software resolves down to cases shown
previously (e.g., INVLPG)

a Other Details

Accessed and Dirty Bits require special treatment (emulated
through R/W and P page protections)

Real-mode supported through an “identity” page table

o Other Optimizations

Other VTLB refill policies possible (eager vs. lazy refill) with
different trade-offs

Possible to maintain multiple shadow page tables to reduce
VTLB flush cost

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 45

Extended Page Tables (EPT)

e A VMM must protect host physical memory

— Multiple guest operating systems share the
same host physical memory

— VMM typically implements protections through
“page-table shadowing” in software

 Page-table shadowing accounts for a large portion of
virtualization overheads

— VM exits due to: #PF INVLPG, MOV CR3

Goal of EPT is to reduce these overheads

What Is EPT?

CR3 EPT Base Pointer (EPTP)

.

Guest IA-32| Guest Physical Address Extended

Host Physical Address

Y

Guest Linear Address __ | Page Page
Tables Tables

* Extended Page Table
A new page-table structure, under the control of the VMM
— Defines mapping between guest- and host-physical addresses
— EPT base pointer (new VMCS field) points to the EPT page tables
— EPT (optionally) activated on VM entry, deactivated on VM exit
* Guest has full control over its own IA-32 page tables
— No VM exits due to guest page faults, INVLPG, or CR3 changes

Host Physical Address

A

Page
Directory Page Table

EPT

Tables
\—T EPT Tables

Guest ’

Physical \

Page Base Guest ﬁhysical
Address Address

e All guest-physical memory addresses go through EPT tables
— (CR3, PDE, PTE, etc.)

* Above example is for 2-level table for 32-bit address space
— Translation possible for other page-table formats (e.g., PAE)

System Virtualization Case Studies
I0-Device Virtualization

10 Virtualization: General Principles

Hypervisor Architecture Hosted Architecture
VM, VM, VM, Usgrlevel VWM VM,
VM,
Guest OS Guest OS Guest OS Device
and Apps and Apps and Apps User
Apps Guest OS
and Apps
Hypervisor Host O
Device Models (Top) H Device Ring-0 VMM E
Device Drivers (Bottom) Drivers “Kernel”]
o T |y 3
N ~
) N
~ N 7
o Virtual device model presents ., J
interface to guest operating system Virtual Device
o Physical device driver programs Interface and Model
and responds to actual device Physical Device
hardware Interface and Driver

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

Virtual and Physical Device Interfaces

VM,

Guest OS
and Apps

Guest device driver programs
“virtual device” interface:

* Device Configuraion Accesses

I

* [O-port Accesses
» Memory -mapped Device Regisiers

Virtual Device

Interface and Model

Virtual device model proxies
accesses to physical device driver:
+ Possible tanslation of commands

\ « Translaion of DMA addresses

VM,

Guest OS
and Apps

|

Virtual device model proxies
device activity back to guest OS:
» Copying (or franslation) of DMA buffers

* Injection of “virtual interrupts”

Virtual Device

Interface and Model

/

Physical Device
Interface and Driver

Physical Device
Interface and Driver

Device driver programs actual\‘

physical |0 device:

+ Device configuration

+ |Oport and MMIQ accesses [TTTTT

Physical Device
System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 48

August 2005

// Physical device responds to commands:

+ DMA fransactions fo host phy sical memory

+ Physical device inerrupts

Case Study: 10 Virtualization with VT-x

VM,
VMCS
Guest OS G e A
and Apps LfeSt ewc.e ”_Ver programs - Bits sef as shown previously to
“virtual device” interface: VM-execution Controls implement VTLB algorithm
* Device Configuraion Accesses
* |0-port Accesses _ Various Paging Controls
» Memory-mapped Device Registers :
|O-port bitmap 3
Bitmap set to cause exits on
Virtual Device specific |O ports as needed
Interface and Model | >

0 VT-x provides and 10-port bitmap execution control

Enables VMM to intercept any 10-port accesses for bus
configuration or 10-device control

0 VT-x provides paging controls to intercept MMIO

VTLB-like algorithm can enforce VM exits on physical pages
with memory-mapped 10 (MMIO) registers

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 49

10 Virtualization with VT-x (cont.)

VMCS

VM-execution Contols

Bit set fo allow guest to run untl
itis ready fo accept interrupts

Interruptwindow exifing

VIM-entry Confrols

Interruptinformaton field

VM

0

Guest OS
and Apps

|

Virtual device model proxies

device activity back to guest OS:
» Copying (or ranslation) of DMA buffers
» Injection of “virtual interrupts”

Used fo inject a virtual interrupt
when guest is ready

0 VT-x Interrupt-window exiting

Virtual Device

Interface and Model

Guest OS may not be interruptible (e.g., critical section)

- Interrupt-window exiting allows guest OS to run until it has
enabled interrupts (via EFLAGS.IF)

o VT-x Event Injection on VM entry
Enables VMM to vector interrupt through guest IDT on VM entry

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 50

VT-d Overview:
Intel Virtualization Technology
For Directed I/0O

Options For I/O Virtualization

Monolithic Model Service VM Model Pass-through Model
Service VMs Guest VMs
Guest OS Guest OS il Guest 0S Guest OS
and Apps and Apps Services and Apps and Apps
Device Device Device
I/ Cervices Drivers - UIO Drivers Drivers
and Apps
B
Device Drivers
: - Hy' 2rvisor
Hypervisor Hypervisor y
Shared Shared - Assigned
= Devices = Devices == Devices
@ Pro: Higher Performance @ Pro: High Security @ Pro: Highest Performance
@ Pro: |/O Device Sharing @ Pro: 1/0O Device Sharing @ Pro: Smaller Hypervisor
@ Pro: VM Migration @ Pro: VM Migration @ Pro: Device assisted sharing
@ Con: Larger Hypervisor ® Con: Lower Performance ® Con: Migration Challenges

VT-d Goal: Support all Models

VT-d Overview

* VT-dis platform infrastructure for /O virtualization
— Defines architecture for DMA remapping
— Implemented as part of platform core logic
— Will be supported broadly in Intel server and client chipsets

CPU CPU

1Eystem Bus

North Bridge

— (—] DRAM
Integrated PCle* Root Ports
Devices
1IP%II Eg}reisg 11 II
South L pa, e,
Bridge <:> Legacy devices, ...

VT-d Usage

Basic infrastructure for 1/0O virtualization

— Enable direct assignment of |/O devices to unmodified or
paravirtualized VMs

Improves system reliability
— Contain and report errant DMA to software

Enhances security
— Support multiple protection domains under SW control
— Provide foundation for building trusted 1/O capabilities

Other usages
— Generic facility for DMA scatter/gather
— Overcome addressability limitations on legacy devices

VT-d Architecture Detail

DMA Requests

Device ID Virtual Address

4

Fault Generation

Translation Cache

Context Cache

Memory Access with System
Physical Address

4KB Page

Device D1

Assignment

Structures
Device D2

ranslation
uctures

Memory-resident Partitioning And
Translation Structures

VT-d: Remapping Structures

@ VT-d hardware selects page-table based on source of DMA request
©® Requestor ID (bus / device / function) in request identifies DMA source

® VT-d Device Assignment Entry

127

64
63 0
Address Space Root Pointer I

® VT-d supports hierarchical page tables for address translation
© Page directories and page tables are 4 KB in size
© 4KB base page size with support for larger page sizes
© Support for DMA snoop control through page table entries

@ VT-d Page Table Entry

63 0

ige-Frame / Page-Table Address Available

n

VT-d: Hardware Page Walk

Requestor ID

15 8 7

3

2 0

Bus

Device F

unc

i

Device
Assignment
Tables

DMA Virtual Address

Example Device Assignment Table

39 38 30 29 21 20 12 11
L evel-4 Level-3 Level-2 fevel-1 p Offset
rable offset [table offset table offset table offset age >€
....... »
i
....... Page
...>
| - .>
A T R A R P
Level-4 >
Page Table Level-3 ¢ N
Page Table Level-2
Page Table
g Level-1 »

Entry specifying 4-level page table

Page Table

VT-d: Translation Caching

Architecture supports caching of remapping structures

— Context Cache: Caches frequently used device-assignment entries
— 10TLB: Caches frequently used translations (results of page walk)
— Non-leaf Cache: Caches frequently used page-directory entries

When updating VT-d translation structures, software enforces
consistency of these caches

— Architecture supports global, domain-selective, and page-range
invalidations of these caches

— Primary invalidation interface through MMIO registers for synchronous
invalidations

— Extended invalidation interface for queued invalidations

VT-x & VT-d Working Together

Virtual
Machines

Virtual Machine Monitor (VMM)

Binary[|

i—ﬁ(jnsl.
ravi lization

Logical

Processors \ Physical Memory / /O Devices

Hardware Virtualization
Mechanisms under VMM Control

How Intel Virtualization Technology
Address Virtualization Challenges

Reduced Complexity
— VT-x removes need for binary translation / paravirtualization
— Can avoid I/O emulation for direct-mapped I/O devices

Improved Functionality

— 64-bit guest OS support, remove limitations of paravirtualization
— Can grant Guest OS direct access to modern physical I/O devices
Enhanced Reliability and Protection

— Simplified VMM reduces “trusted computing base” (TCB)

— DMA errors logged and reported to software

Improved Performance
— Hardware support reduces address-translation overheads
— No need for shadow page tables (saves memory)

Delivering Intel VT

Established Intel Virtualization Technology Specifications for
Intel based platforms

— For the IA-32 Intel Architecture (Jan 2005) VT-x

— For the Intel Itanium Architecture (Jan 2005) VT-i

— For Directed 1/O Architecture (March 2006) VT-d

— See http://www.intel.com/technology/computing/vptech/

Shipping Intel based platforms enabled with Intel VT

— VT-x: Desktop in 2005, Mobile platforms and Intel Xeon
processor based servers and workstations in 2006

— VT-i: Later in 2006, Intel Itanium processor based servers

— VT-d: Intel is enabling VMM vendors with VT-d silicon in 2006

http://www.intel.com/technology/computing/vptech/

