Virtual Machine

- Virtual Machine Types
 - System Virtual Machine: virtualize a machine
 - Container: virtualize an OS
 - Program Virtual Machine: virtualize a process
 - Language Virtual Machine: virtualize a language environment
- Virtualization Techniques
 - Paravirtualization (e.g., Xen)
 - Binary rewriting with Ring Deprivation (e.g., VMWare)
 - Dynamic Binary Translation (e.g., QEMU)
 - Hardware Virtualization (e.g., KVM)
 - System Call Level Virtualization (e.g., Linux Container)

System Virtual Machines: Outline

- Applications and Usage Models
- Virtualization Methods and VMM Software Architecture
- Hardware Resource Virtualization
 - General principles of CPU virtualization (with IA-32 / Intel VT* case study)
 - General principles of memory virtualization (page-table shadowing case study)
 - General principles of IO virtualization

□ Wrap-up

* Intel® Virtualization Technology (VT)

System Virtual Machines (VMs)

Without VMs: Single OS owns all hardware resources

With VMs: Multiple OSes share hardware resources

 A Virtual Machine Monitor (VMM) honors existing hardware interfaces to create virtual copies of a complete hardware system

August 2005System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation4

System VMs: Applications and Usage Models

Basic System VM Capabilities

Workload Isolation

App₁ App₂ App₁ App₂ App₁ App₂ App₁ App₂ OS₁ OS_2 OS₁ OS₂ OS OS_2 OS₁ HW VMM HW. HW₂ VMM HW HW **Workload Migration** Workload Embedding App₁ App₂ App App App₁ HW OS, OS_2 OS OS OS₁ VMM VMM VMM VMM HW VMM HW₂ HW, HW₂ HW HW₁

Workload Aggregation

August 2005System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation6

Traditional Server Applications

Manageability, Reliability, Availability

- Server consolidation (Legacy OSes, "One App per OS")
- Staged deployment of OS upgrades, security patches, etc.
- Software failures confined to VM in which they occur
- Service migration in "Virtual Data Center"

7

Emerging Client Applications

Security / Trusted Computing

- VMs encapsulate untrusted legacy software
- Create new environment for trusted code

Client Partitioning

 Extending server manageability features to the client (e.g., "Embedded IT" client)

Virtualization Methods and VMM Software Architecture

Anatomy of a Virtualized System

Base VMM Requirements

□ A VMM must be able to:

- Protect itself from guest software
- Isolate guest software stacks (OS + Apps) from one another
- Present a (virtual) platform interface to guest software

□ To achieve this, VMM must control access to:

CPUs, Memory and I/O Devices

□ Ways that a VMM can share resources between VMs

- Time multiplexing
- Resource partitioning
- Mediating hardware interfaces

(1) Time Multiplexing

- VM is allowed direct access to resource for a period of time before being context switched to another VM (e.g., CPU resource)
- Devil is in the details (will examine via a case study in later foils)

August 2005System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation12

(2) Resource Partitioning

□ VMM allocates "ownership" of phys resources to VMs

- Typically involves some remapping and protection mechanism
- Examples: physical memory, disk partitions, graphical display

(3) Mediating Hardware Interfaces

□ VMM retains direct ownership of physical resource

- VMM hosts device driver as well as a virtualized device interface
- Virtual interface can be same as or different than physical device

Putting it all Together...

VMM applies all 3 sharing methods, as needed, to create illusion of platform ownership to each guest OS

Some VMM Architecture Options

VM₀ Guest OS and Apps WM₁ Guest OS and Apps WM_n Guest OS and Apps Hypervisor Device Models (Top) Device Drivers (Bottom) Host HW

Hypervisor Architecture

 Hypervisor architecture provides its own device drivers and services

Hosted Architecture

 Hosted architecture leverages device drivers and services of a "host OS"

System Virtualization Case Studies Processor Virtualization

CPU Virtualization: General Principles

□ To virtualize a CPU, a VMM must retain control over:

- Accesses to privileged state (control regs, debug regs, etc.)
- Exceptions (page faults, machine-check exceptions, etc.)
- Interrupts and interrupt masking
- Address translation (via page tables)
- · CPU access to I/O (via I/O ports or MMIO)

CPU Control via "Ring Deprivileging"

□ Ring Deprivileging Defined:

- Guest OS kernel runs in a less privileged ring than usual (i.e., above ring 0)
- VMM runs in the most privileged ring 0

□ Goal of ring deprivileging is to prevent guest OS from:

- Accessing privileged instructions / state
- Modifying VMM code and data

Case Study: IA-32 CPU Virtualization

IA-32 Provides 4 Privilege Levels (Rings)

Segment-based Protections

Distinguish between all 4 rings

Page-based Protections

- Separate only User and Supervisor modes
- User mode: Code running in ring 3
- Supervisor mode: Code running in rings 0, 1, or 2

Ring Deprivileging: Some Options

Ring Compression

□ For the case of the 0/3 Model:

- Guest OS and Apps run in the same ring (3)
- Lose ring protections between guest OS / Apps
- Two rings are "compressed" into one

□ For the case of the 0/1/3 Model:

- No ring compression, but...
- Can't use paging to protect VMM from guest OS
- VMM forced to use segment-based protections

□ The following foils assume 0/1/3 Model...

IA-32 Virtualization Holes

August 2005System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation23

Addressing IA-32 "Virtualization Holes"

Method 1: Paravirtualization Techniques

- Modify guest OS to work around virtualization holes
- Requires ability to modify guest-OS source code

Method 2: Binary Translation or Patching

- Modify guest OS binaries "on-the-fly"
- Source code not required, but introduces new complexities
- E.g., self-modifying code, translation caching, etc.
- Some excessive trapping remains (e.g., SYSENTER case)

Method 3: Change Processor ISA

Re-architect instruction set to close virtualization holes by design

Software-only

Methods

Example: New VT-x features for IA-32 processors...

Case Study: IA-32 Virtualization w/ VT-x

□ VT-x is a new operating mode for IA-32 processors

- Part of Intel® Virtualization Technology (VT)
- Will be launched in Intel desktop CPUs in second half of 2005
- Operating mode enabled with VMXON / VMXOFF
- □ VT-x provides two new forms of operation:
 - Root Operation: Fully privileged, intended for VMM
 - Non-root Operation: Not fully privileged, intended for guest OS

Case Study: IA-32 Virtualization w/ VT-x

VT-x Transitions: VM Entry and VM Exit

VM Entry

- VMM-to-guest transition
- Initiated by new instructions: VMLAUNCH or VMRESUME
- Enters non-root operation, loading guest state
- Establishes key guest state in a single, atomic operation

VM Exit

Virtual Machines (VMs)

August 2005System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation27

VT-x Config Flexibility with the VMCS

□ VM Control Structure (VMCS) specifies CPU behavior

- Holds guest state loaded / stored on VM entry / exit
- Accessed through a VMREAD / VMWRITE interface

□ Configuration of VMCS controls guest OS behavior

VMM programs VMCS to cause VM exits on desired events

VM exits possible on:

- Privileged State: CRn, DRn, MSRs
- Sensitive Ops: CPUID, HLT, etc.
- Paging events: #PF, INVLPG
- Interrupts and Exceptions

Other optimizations:

· Bitmaps, shadow registers, etc.

The VM Control Structure (VMCS)

VM-execution controls	Determines what operations cause VM exits	CR0, CR3, CR4, Exceptions, IO Ports, Interrupts, Pin Events, etc.
Guest - state area	Saved on VM exits Reloaded on VM entry	EIP, ESP, EFLAGS, IDTR, Segment Regs, Exit info, etc.
Host -state are a	Loaded on VM exits	CR3, EIP set to monitor entry point, EFLAGS hardcoded, etc.
VM-exit controls	Determines which state to save, load, how to transition	Example: MSR save -load list
VM-entry controls	Determines which state to load, how to transition	Incl uding injecting events (interrupts, exceptions) on entry

Each virtual CPU has a separate VMCS

For MP guest OS: separate VMCS for each "virtual CPU"

□ One VMCS per logical CPU is active at any given time

VMPTRLD instruction used to switch from one VMCS to another

Example VM-exit Causes

Sensitive Instructions

- **CPUID** Reports processor capabilities
- RDMSR, WRMSR Read and write "Model-Specific Registers"
- INVLPG Invalidate TLB Entry
- RDPMC, RDTSC Read Perf Mon or Time-Stamp Counters
- HLT, MWAIT, PAUSE Indicate Guest OS Inactivity
- VMCALL New Instruction for Explicit Call to VMM

Accesses to Sensitive State

- MOV DRx Accesses to Debug Registers
- MOV CRx Accesses to Control Registers
- Task Switch Accesses to CR3

Exceptions and Asynchronous Events

Page Faults, Debug Exceptions, Interrupts, NMIs, etc.

Some Example VM-Exit Optimizations

VT-x provides various optimizations to minimize frequency of VM exits:

Shadow Registers and Masks

- Reads from CR0 and CR4 are satisfied from shadow registers established by the VMM
- VM exits can be conditional based on the specific bits modified on a CR write (via a mask)

Execution-Control Bitmaps

 VM exits can be selectively controlled via bitmaps (e.g., for exceptions, IO-port accesses)

Some Example VM-Exit Optimizations (2)

Time-Stamp Counter (TSC) Offsets

- VMM can supply an offset that is applied to reads of the TSC during guest execution
- Eliminates VM exits on executions of *RDTSC* and reduces distortions of "virtual time"

External-interrupt Exiting

- External interrupts cause VM exits
- Interrupts never masked; no need for VM exits on CLI, STI, etc.

Optimized Interrupt Delivery

- VMM can pend a "virtual interrupt" to a guest OS
- VM exit occurs only when guest-OS interrupt window is open
- Eliminates exits on most executions of *CLI*, *STI*, *IRET*, etc.

VM Entry: Event Injection

□ Allows VMM to inject events on VM entry:

- External interrupts
- NMI
- Exceptions (e.g., page fault)
- □ Injection occurs after all guest state is loaded
- □ Performs all the normal IDT checks, etc.
- Removes burden from VMM of emulating IDT, fault checking, etc.

How VT-x Closes Virtualization Holes

System Virtualization Case Studies Memory Virtualization

Mem Virtualization: General Principles

Guest OS expects to control address translation

Allocates memory, page tables, manages TLB consistency, etc.

□ But, VMM must have ultimate control over phys mem

• Must map guest-physical address space to host-physical space

A Case Study: IA-32 Address Translation

□ IA-32 defines a hierarchical page-table structure

- Defines linear-to-physical address translation
- After page-table walk, page-table Entries (PTEs) are cached in a hardware TLB
- □ IA-32 address translation configured via control registers (CR3, etc.)
- Invalidation of PTEs signaled by OS via INVLPG instruction

Virtualizing Page Tables: Some Options

Option 1: Protect access to guest-OS page tables (PTs)

- Use paging protections or binary translation to detect changes
- Upon write access, substitute remapped phys address in PTE
- Also need VM exit on page-table reads (to report original PTE value to guest OS)

□ Option 2: Make a shadow copy of page tables

- Guest OS freely changes its page tables
- VM exit occurs whenever CR3 changes
- VMM copies contents of *guest* page tables to *active* page tables
- Copy operation is analogous to a TLB refill, hence: "Virtual TLB"

Details of option 2 follow

As illustration of the use of VT-x...

□ VTLB = Processor TLB + Active Page Table

- · VMM initializes an empty VTLB and starts guest execution
- When guest accesses memory, #PF occurs, and is sent to VMM
- VMM copies needed translation (VTLB refill) and resumes guest

Virtual TLB: VT-x Setup

□ VTLB algorithm programs VMX to cause VM exits on:

- Any writes to CR3 and relevant writes to CR0 and CR4
- Any page-fault (#PF) exceptions
- Any executions of INVLPG

Virtual TLB: Actions on CR3 Write

□ CR3 write implies a TLB flush and page-table change

- VMM notes new CR3 value (used later to walk guest PT)
- VMM allocates a new PD page, with all invalid entries
- VMM sets actual CPU CR3 register to point to the new PD page

Virtual TLB: Actions on a Page Fault

VMM examines guest PT using faulting addr

- If relevant PTE or PDE is invalid (P=0), then the #PF must be reflected to the guest OS.
- VMM configures VMCS for a "#PF vector-on-entry"
- Then resumes guest execution with a VMRESUME

Virtual TLB: Actions on a Page Fault (2)

□ If guest page table indicates sufficient access, then...

- VMM allocates PT and copies guest PTE to the active PT
- PFN of active PTE remapped to new value as per VMM policy
- Other active PTE bits set as in guest PTE (e.g., P, G, U/S)

Virtual TLB: Actions on INVLPG

Guest OS permitted to freely modify its page tables

- Implies guest PTs and active PTs can become inconsistent
- This is okay! (same as inconsistencies between PTs and TLB)
- If guest reduces access, signals via INVLPG, causing a VM exit
- VMM invalidates corresponding PTE in the active PT

August 2005System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation44

Virtual TLB: A few other details

MP considerations (TLB shootdown)

- Each logical processor has its own VTLB (just as it has a TLB)
- TLB shootdown in software resolves down to cases shown previously (e.g., INVLPG)

Other Details

- Accessed and Dirty Bits require special treatment (emulated through R/W and P page protections)
- Real-mode supported through an "identity" page table

Other Optimizations

- Other VTLB refill policies possible (eager vs. lazy refill) with different trade-offs
- Possible to maintain multiple shadow page tables to reduce VTLB flush cost

Extended Page Tables (EPT)

- A VMM must protect host physical memory
 - Multiple guest operating systems share the same host physical memory
 - VMM typically implements protections through "page-table shadowing" in software
- Page-table shadowing accounts for a large portion of virtualization overheads
 - VM exits due to: #PF, INVLPG, MOV CR3

What Is EPT?

- Extended Page Table
- A new page-table structure, under the control of the VMM
 - Defines mapping between guest- and host-physical addresses
 - EPT base pointer (new VMCS field) points to the EPT page tables
 - EPT (optionally) activated on VM entry, deactivated on VM exit
- Guest has full control over its own IA-32 page tables
 - No VM exits due to guest page faults, INVLPG, or CR3 changes

EPT Translation: Details

- All guest-physical memory addresses go through EPT tables
 - (CR3, PDE, PTE, etc.)
- Above example is for 2-level table for 32-bit address space
 - Translation possible for other page-table formats (e.g., PAE)

System Virtualization Case Studies IO-Device Virtualization

IO Virtualization: General Principles

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 47

Virtual and Physical Device Interfaces

Case Study: IO Virtualization with VT-x

VT-x provides and IO-port bitmap execution control

 Enables VMM to intercept any IO-port accesses for bus configuration or IO-device control

VT-x provides paging controls to intercept MMIO

 VTLB-like algorithm can enforce VM exits on physical pages with memory-mapped IO (MMIO) registers

August 2005System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation49

IO Virtualization with VT-x (cont.)

VT-x Interrupt-window exiting

- Guest OS may not be interruptible (e.g., critical section)
- Interrupt-window exiting allows guest OS to run until it has enabled interrupts (via EFLAGS.IF)

VT-x Event Injection on VM entry

Enables VMM to vector interrupt through guest IDT on VM entry

VT-d Overview: Intel Virtualization Technology For Directed I/O

Options For I/O Virtualization

- Pro: Higher Performance
- Pro: I/O Device Sharing
- Pro: VM Migration
- Con: Larger Hypervisor

Service VM Model

- Pro: High Security
- Pro: I/O Device Sharing
- Pro: VM Migration
- Con: Lower Performance

Pass-through Model

- Pro: Highest Performance
- Pro: Smaller Hypervisor
- Pro: Device assisted sharing
- Con: Migration Challenges

VT-d Goal: Support all Models

VT-d Overview

- VT-d is platform infrastructure for I/O virtualization
 - Defines architecture for DMA remapping
 - Implemented as part of platform core logic
 - Will be supported broadly in Intel server and client chipsets

VT-d Usage

- Basic infrastructure for I/O virtualization
 - Enable direct assignment of I/O devices to unmodified or paravirtualized VMs
- Improves system reliability
 - Contain and report errant DMA to software
- Enhances security
 - Support multiple protection domains under SW control
 - Provide foundation for building trusted I/O capabilities
- Other usages
 - Generic facility for DMA scatter/gather
 - Overcome addressability limitations on legacy devices

VT-d Architecture Detail

Memory Access with System Physical Address Memory-resident Partitioning And Translation Structures

VT-d: Remapping Structures

- VT-d hardware selects page-table based on source of DMA request
 - Requestor ID (bus / device / function) in request identifies DMA source
- VT-d Device Assignment Entry

- VT-d supports hierarchical page tables for address translation
 - Page directories and page tables are 4 KB in size
 - 4KB base page size with support for larger page sizes
 - Support for DMA snoop control through page table entries
 - VT-d Page Table Entry

VT-d: Hardware Page Walk

Requestor ID

DMA Virtual Address

VT-d: Translation Caching

- Architecture supports caching of remapping structures
 - <u>Context Cache</u>: Caches frequently used device-assignment entries
 - <u>IOTLB</u>: Caches frequently used translations (results of page walk)
 - <u>Non-leaf Cache</u>: Caches frequently used page-directory entries
- When updating VT-d translation structures, software enforces consistency of these caches
 - Architecture supports global, domain-selective, and page-range invalidations of these caches
 - Primary invalidation interface through MMIO registers for synchronous invalidations
 - Extended invalidation interface for queued invalidations

VT-x & VT-d Working Together

How Intel Virtualization Technology Address Virtualization Challenges

- Reduced Complexity
 - VT-x removes need for binary translation / paravirtualization
 - Can avoid I/O emulation for direct-mapped I/O devices
- Improved Functionality
 - 64-bit guest OS support, remove limitations of paravirtualization
 - Can grant Guest OS direct access to modern physical I/O devices
- Enhanced Reliability and Protection
 - Simplified VMM reduces "trusted computing base" (TCB)
 - DMA errors logged and reported to software
- Improved Performance
 - Hardware support reduces address-translation overheads
 - No need for shadow page tables (saves memory)

Delivering Intel VT

- Established Intel Virtualization Technology Specifications for Intel based platforms
 - For the IA-32 Intel Architecture (Jan 2005)
 VT-x
 - For the Intel Itanium Architecture (Jan 2005) VT-i
 - For Directed I/O Architecture (March 2006) VT-d
 - See <u>http://www.intel.com/technology/computing/vptech/</u>
- Shipping Intel based platforms enabled with Intel VT
 - VT-x: Desktop in 2005, Mobile platforms and Intel Xeon processor based servers and workstations in 2006
 - VT-i: Later in 2006, Intel Itanium processor based servers
 - VT-d: Intel is enabling VMM vendors with VT-d silicon in 2006