
S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y
B . R A M A M U R T H Y

Hadoop File System

11/15/2017

1

Moving Computation is Cheaper than Moving Data

http://hadoop.apache.org/

Motivation: Big Data!

 What is BigData ?

- Google (over 20~ PB/day)

 Where does it come from ?

 Why to take so much of pain ?

- Information everywhere, but where is the

knowledge?

 Existing systems (vertical scalibility)

 Why Hadoop (horizontal scalibility)?

Origin of Hadoop

 MapReduce paper in OSDI 2014 (Google)
 new programming paradigm to handle data at internet scale

 Google developed GFS

 Hadoop/HDFS open source version of MapReduce
 Hadoop started as a part of the Nutch project.

 In Jan 2006 Doug Cutting started working on Hadoop at Yahoo

 Factored out of Nutch in Feb 2006

 Yahoo gave it to Apache

 First release of Apache Hadoop in September 2007
 Jan 2008 - Hadoop became a top level Apache project

What is Hadoop ?

 Flexible infrastructure for large scale
computation & data processing on a network of
commodity hardware

 Completely written in java

 Open source & distributed under Apache license

 Hadoop Common, HDFS & MapReduce

Hadoop distributions

 Amazon

 Cloudera

 MapR

 HortonWorks

 Microsoft Windows Azure.

 IBM InfoSphere Biginsights

 Datameer

 EMC Greenplum HD Hadoop distribution

 Hadapt

Google/GFS Assumptions

 Based on Google workloads

 Also the assumptions driving HDFS

1. Hardware failure common

2. Files are large, and numbers are limited (millions
not billions)

3. Two main types of reads: large streaming reads and
small random reads

4. Sequential writes that append to files

5. Files rarely modified (simplifies coherence)

6. High sustained bandwidth preferred to low latency

11/15/2017

7

What is Hadoop ?

 Flexible infrastructure for large scale
computation & data processing on a network of
commodity hardware

 Completely written in java

 Open source & distributed under Apache license

 Hadoop Common, HDFS & MapReduce

Basic Features: HDFS

 Highly fault-tolerant

 Thousands of server machines

 Failure norm rather than exception

 High throughput

 Internet scale workloads

 Move compute to data (e.g., MapReduce)

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

 Compare to RAID

11/15/2017

9

Data Characteristics

 Large data sets and files: gigabytes to terabytes size
 Tens of millions of files in a single instance

 Applications need streaming access to data
 Batch processing rather than interactive user access.

 Scale to thousands of nodes in a cluster

 Write-once-read-many: a file once created rarely needs
to changed
 Assumption simplifies coherence
 Internet workloads (e.g., map-reduce or web-crawler) fits model

11/15/2017

10

Cat

Bat

Dog

Other
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce

11/15/2017

11

Architecture

11/15/2017

12

Whats new for us?

 Why not just run NFS?

 Scalability

 Performance

 Elasticity

 Reliability

 Is it a different form of RAID?

11/15/2017

13

Namenode and Datanodes

 HDFS exposes a file system
 Each file is split into one or more

 A single Namenode
 Maintains metadata and name space
 Regulates access to files by clients
 Carries out rebalancing and fault recovery

 Many DataNodes, usually one per node in a cluster
 DataNodes manage storage attached to the nodes that they run on
 Serves read, write requests, performs block creation, deletion, and replication upon

instruction from Namenode
 Communicates to Namenode via heartbeats

 Namenode communicates back through replies; otherwise clients talk directly to datanodes

11/15/2017

14

HDFS Architecture

11/15/2017

15

Namenode

B
replication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)
(/home/foo/data,6. ..

Block ops

File system Namespace

11/15/2017

16

 Hierarchical file system with directories and files

 Create, remove, move, rename etc.

 File system API started as unix compatible

 “faithfulness to standards was sacrificed in favor of improved
performance …”

 Any meta information changes to the file system
recorded by the Namenode.

Data Replication

11/15/2017

17

 HDFS is designed to store very large files across
machines in a large cluster.

 Each file is a sequence of blocks.

 All blocks in the file except the last are of the same size.

 Blocks are replicated for fault tolerance.

 Block size and replicas are configurable per file.

 The Namenode receives a Heartbeat and a
BlockReport from each DataNode in the cluster.

 BlockReport contains all the blocks on a Datanode.

Replica Placement

11/15/2017

18

 The placement of the replicas is critical to HDFS reliability
and performance.

 Rack-aware replica placement:
 Goal: improve reliability, availability and network bandwidth utilization
 Research topic

 Many racks, communication between racks are through
switches.

 Replicas are typically placed on unique racks
 Simple but non-optimal
 Writes are expensive
 Replication factor is 3

 Replicas are placed: one on a node in a local rack, one on a
different node in the local rack and one on a node in a
different rack.

Rack awareness

Typically large Hadoop clusters are arranged in racks and
network traffic between different nodes with in the same
rack is much more desirable than network traffic across
the racks. In addition Namenode tries to place replicas of
block on multiple racks for improved fault tolerance. A
default installation assumes all the nodes belong to the
same rack.

Filesystem Metadata

11/15/2017

20

 The HDFS namespace is stored by Namenode.

 Namenode uses a transaction log called the EditLog
to record every change that occurs to the filesystem
meta data.

 For example, creating a new file.

 Change replication factor of a file

 EditLog is stored in the Namenode’s local filesystem

 Metadata only

 Entire filesystem namespace including mapping of
blocks to files and file system properties is stored in a
file FsImage. Stored in Namenode’s local filesystem.

Namenode

11/15/2017

21

 Keeps image of entire file system namespace and file
Blockmap in memory.

 4GB of local RAM is sufficient

 When Namenode starts up it gets the FsImage and
Editlog from its local file system

 update FsImage with EditLog information and then stores a
copy of the FsImage on the filesytstem as a checkpoint.

 Periodic checkpointing is done. So that the system
can recover back to the last checkpointed state in
case of a crash.

Datanode

11/15/2017

22

 A Datanode stores data in files in its local file system.

 Datanode has no knowledge about HDFS filesystem

 It stores each block of HDFS data in a separate file.

 Datanode does not create all files in the same directory.

 It uses heuristics to determine optimal number of files
per directory and creates directories appropriately:
 Research issue?

 When the filesystem starts up it generates a list of all
HDFS blocks and send this report to Namenode:
Blockreport.

Protocol

11/15/2017

23

The Communication Protocol

11/15/2017

24

 All HDFS communication protocols are layered on top of
the TCP/IP protocol

 A client establishes a connection to a configurable TCP
port on the Namenode machine. It talks ClientProtocol
with the Namenode.

 The Datanodes talk to the Namenode using Datanode
protocol.

 RPC abstraction wraps both ClientProtocol and
Datanode protocol.

 Namenode is simply a server and never initiates a
request; it only responds to RPC requests issued by
DataNodes or clients.

Robustness

11/15/2017

25

Objectives

 Primary objective of HDFS is to store data reliably in
the presence of failures.

 Three common failures are: Namenode failure,
Datanode failure and network partition.

11/15/2017

26

DataNode failure and heartbeat

 A network partition can cause a subset of Datanodes
to lose connectivity with the Namenode.

 Namenode detects this condition by the absence of a
Heartbeat message.

 Namenode marks Datanodes without Hearbeat and
does not send any IO requests to them.

 Any data registered to the failed Datanode is not
available to the HDFS.

 Also the death of a Datanode may cause replication
factor of some of the blocks to fall below their
specified value.

11/15/2017

27

Re-replication

 Re-replication (creating more replicas) is sometimes
needed

 Re-replication could be invoked due to:

 A Datanode is unavailable,

 A replica is corrupted,

 A hard disk on a Datanode fails, or

 The replication factor on the block may be increased.

11/15/2017

28

Metadata Disk Failure

 FsImage and EditLog are central data structures of HDFS.

 A corruption of these files can cause a HDFS instance to be
non-functional.

 For this reason, a Namenode can be configured to maintain
multiple copies of the FsImage and EditLog.

 Multiple copies of the FsImage and EditLog files are
updated synchronously.

 Meta-data is not data-intensive.

 The Namenode could be single point failure: automatic
failover originally NOT supported!

11/15/2017

31

Discussion

 Single metadata server – why?

 Can we replicate?

 Consistency issues!

 Can we parallelize?

 Yes, GFS does it, as do several research DFS

 But by partitioning directory space to different servers – no

replication

11/15/2017

32

Data Organization

11/15/2017

33

Data Blocks

 HDFS support write-once-read-many with reads at
streaming speeds.

 A typical block size is 64MB (or even 128 MB).

 A file is chopped into 64MB chunks and stored.

11/15/2017

34

Staging

 A client request to create a file does not reach
Namenode immediately.

 HDFS client caches the data into a temporary file.
When the data reached a HDFS block size the client
contacts the Namenode.

 Namenode inserts the filename into its hierarchy and
allocates a data block for it.

 The Namenode responds to the client with the
identity of the Datanode and the destination of the
replicas (Datanodes) for the block.

 Then the client flushes it from its local memory.
11/15/2017

35

Staging (contd.)

 The client sends a message that the file is closed.

 Namenode proceeds to commit the file for creation
operation into the persistent store.

 If the Namenode dies before file is closed, the file is
lost.

 This client side caching is required to avoid network
congestion; also it has precedence is AFS (Andrew
file system).

11/15/2017

36

Replication Pipelining

 When the client receives response from Namenode,
it flushes its block in small pieces (4K) to the first
replica, that in turn copies it to the next replica and
so on.

 Thus data is pipelined from Datanode to the next.

11/15/2017

37

API (Accessibility)

11/15/2017

38

Application Programming Interface

 HDFS provides Java API for application to use.

 Python access is also used in many applications.

 A C language wrapper for Java API is also available.

 A HTTP browser can be used to browse the files of a
HDFS instance.

11/15/2017

39

http://www.cs.brandeis.edu/~cs147a/lab/hadoop-example-java
http://www.cs.brandeis.edu/~cs147a/lab/hadoop-example

FS Shell, Admin and Browser Interface

 HDFS organizes its data in files and directories.

 It provides a command line interface called the FS
shell that lets the user interact with data in the
HDFS.

 The syntax of the commands is similar to bash and
csh.

 Example: to create a directory /foodir

/bin/hadoop dfs –mkdir /foodir

 There is also DFSAdmin interface available

 Browser interface is also available to view the
namespace.

11/15/2017

40

Space Reclamation

 When a file is deleted by a client, HDFS renames file
to a file in be the /trash directory for a configurable
amount of time.

 A client can request for an undelete in this allowed
time.

 After the specified time the file is deleted and the
space is reclaimed.

 When the replication factor is reduced, the
Namenode selects excess replicas that can be
deleted.

 Next heartbeat(?) transfers this information to the
Datanode that clears the blocks for use. 11/15/2017

41

Summary

 We discussed the features of the Hadoop File
System, a peta-scale file system to handle big-data
sets.

 What discussed: Architecture, Protocol, API, etc.

 Missing element: Implementation

 The Hadoop file system (internals)

 An implementation of an instance of the HDFS (for use by
applications such as web crawlers).

11/15/2017

42

