
11

Filesystems

Lecture 13

Credit: some slides by John
Kubiatowicz and Anthony D. Joseph

22

Today and some of next class
Overview of file systems

Papers on basic file systems
A Fast File System for UNIX

Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler and Robert S. Fabry. Appears in

ACM Transactions on Computer Systems (TOCS), Vol. 2, No. 3, August 1984, pp 181-197

Log Structured File Systems (LFS), Ousterhout and Rosenblum

System design paper and system analysis

paper

http://www.cs.berkeley.edu/~kubitron/courses/cs262a-F12/handouts/papers/FFS.pdf

33

OS Abstractions

3

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

44

Review: Magnetic Disk Characteristic

Cylinder: all the tracks under the
head at a given point on all surface

Read/write data is a three-stage
process:

Seek time: position the head/arm over the proper track (into proper cylinder)
Rotational latency: wait for the desired sector
to rotate under the read/write head
Transfer time: transfer a block of bits (sector)
under the read-write head

Disk Latency = Queuing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Highest Bandwidth:
Transfer large group of blocks sequentially from one track

Sector

Track

Cylinder

Head

Platter

Software

Queue

(Device Driver)

H
ard

w
are

C
o

n
tro

lle
r

Media Time

(Seek+Rot+Xfer)

R
eq

u
est

R
esu

lt

55

Historical Perspective
1956 IBM Ramac — early 1970s Winchester

Developed for mainframe computers, proprietary interfaces
Steady shrink in form factor: 27 in. to 14 in.

Form factor and capacity drives market more than performance
1970s developments

5.25 inch floppy disk formfactor (microcode into mainframe)
Emergence of industry standard disk interfaces

Early 1980s: PCs and first generation workstations
Mid 1980s: Client/server computing

Centralized storage on file server
accelerates disk downsizing: 8 inch to 5.25

Mass market disk drives become a reality
industry standards: SCSI, IPI, IDE
5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

1900s: Laptops => 2.5 inch drives
2000s: Shift to perpendicular recording

2007: Seagate introduces 1TB drive
2009: Seagate/WD introduces 2TB drive

2014: Seagate announces 8TB drives

66

Disk History

Data

density

Mbit/sq. in.

Capacity of

Unit Shown

Megabytes

1973:

1. 7 Mbit/sq. in

140 MBytes

1979:

7. 7 Mbit/sq. in

2,300 MBytes

source: New York Times, 2/23/98, page C3,

“Makers of disk drives crowd even mroe data into even smaller spaces”

77

Disk History

1989:

63 Mbit/sq. in

60,000 MBytes

1997:

1450 Mbit/sq. in

2300 MBytes

source: New York Times, 2/23/98, page C3,

“Makers of disk drives crowd even mroe data into even smaller spaces”

1997:

3090 Mbit/sq. in

8100 MBytes

88

Recent: Seagate Enterprise (2015)

10TB! 800 Gbits/inch2

7 (3.5”) platters, 2 heads each

7200 RPM, 8ms seek latency

249/225 MB/sec read/write

transfer rates

2.5million hours MTBF

256MB cache

$650

99

Contrarian View
FFS doesn’t matter in 2012!

What about Journaling? Is it still relevant?

1010

60 TB SSD ($20,000)

1111

Storage Performance & Price
Bandwidth

(sequential R/W)

Cost/GB Size

HHD 50-100 MB/s $0.05-0.1/GB 2-4 TB

SSD1 200-500 MB/s (SATA)

6 GB/s (PCI)

$1.5-5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

11
BW: SSD up to x10 than HDD, DRAM > x10 than SSD

Price: HDD x30 less than SSD, SSD x4 less than DRAM

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/

http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/

1212

File system abstractions
How do users/user programs interact with the file

system?

Files

Directories

Links

Protection/sharing model

Accessed and manipulated by a virtual file system set of

system calls

File system implementation:

How to map these abstractions to the storage devices

Alternatively, how to implement those system calls

1313

File system basics
Virtual file system abstracts away concrete file system

implementation

Isolates applications from details of the file system

Linux vfs interface includes:

creat(name)

open(name, how)

read(fd, buf, len)

write(fd, buf, len)

sync(fd)

seek(fd, pos)

close(fd)

unlink(name)

1414

Disk Layout Strategies

Files span multiple disk blocks

How do you find all of the blocks for a file?

1. Contiguous allocation

Like memory

Fast, simplifies directory access

Inflexible, causes fragmentation, needs compaction

2. Linked structure

Each block points to the next, directory points to the first

Bad for random access patterns

3. Indexed structure (indirection, hierarchy)

An “index block” contains pointers to many other blocks

Handles random better, still good for sequential

May need multiple index blocks (linked together)

14

1515

Zooming in on i-node
i-node: structure for per-file

metadata (unique per file)

contains: ownership, permissions,

timestamps, about 10 data-block

pointers

i-nodes form an array, indexed by

“i-number” – so each i-node has a

unique i-number

Array is explicit for FFS, implicit for

LFS (its i-node map is cache of

i-nodes indexed by i-number)

Indirect blocks:

i-node only holds a small number of data block pointers (direct pointers)

For larger files, i-node points to an indirect block containing

1024 4-byte entries in a 4K block

Each indirect block entry points to a data block

Can have multiple levels of indirect blocks for even larger files

1616

Unix Inodes and Path Search

Unix Inodes are not directories

Inodes describe where on disk the blocks for a file are placed

Directories are files, so inodes also describe where the blocks for

directories are placed on the disk

Directory entries map file names to inodes

To open “/one”, use Master Block to find inode for “/” on disk

Open “/”, look for entry for “one”

This entry gives the disk block number for the inode for “one”

Read the inode for “one” into memory

The inode says where first data block is on disk

Read that block into memory to access the data in the file

This is why we have open in addition to read and write

16

1717

FFS – what’s wrong with original unix FS?
Original UNIX FS was simple and elegant, but slow

Could only achieve about 20 KB/sec/arm; ~2% of 1982 disk

bandwidth

Problems:

Blocks too small

512 bytes (matched sector size)

Consecutive blocks of files not close together

Yields random placement for mature file systems

i-nodes far from data

All i-nodes at the beginning of the disk, all data after that

i-nodes of directory not close together

no read-ahead

Useful when sequentially reading large sections of a file

1818

FFS Changes -- Locality is important

Aspects of new file system:

4096 or 8192 byte block size (why not larger?)

large blocks and small fragments

disk divided into cylinder groups

each contains superblock, i-nodes, bitmap of free blocks, usage

summary info

Note that i-nodes are now spread across the disk:

Keep i-node near file, i-nodes of a directory together (shared fate)

Cylinder groups ~ 16 cylinders, or 7.5 MB

Cylinder headers spread around so not all on one platter

1919

FFS Locality Techniques
Goals

Keep directory within a cylinder group, spread out different

directories

Allocate runs of blocks within a cylinder group, every once in a

while switch to a new cylinder group (jump at 1MB)

Layout policy: global and local

Global policy allocates files & directories to cylinder groups –

picks “optimal” next block for block allocation

Local allocation routines handle specific block requests – select

from a sequence of alternative if need to

2020

FFS Results
20-40% of disk bandwidth for large reads/writes

10-20x original UNIX speeds

Size: 3800 lines of code vs. 2700 in old system

10% of total disk space unusable (except at 50% performance price)

Could have done more; later versions do

Watershed moment for OS designers– File system matters

2121

FFS Summary
3 key features:

Parameterize FS implementation for the hardware it’s running on

Measurement-driven design decisions

Locality “wins”

Major flaws:

Measurements derived from a single installation

Ignored technology trends

A lesson for the future: don’t ignore underlying hardware

characteristics

Contrasting research approaches: improve what you’ve got vs.

design something new

2222

File operations still expensive
How many operations (seeks) to create a new file?

New file, needs a new inode

But at least a block of data too

Check and update the inode and data bitmap (eventually have to

be written to disk)

Not done yet – need to add it to the directory (update the

directory inode and the directory data block – may need to split if

its full)…

Whew!! How does all of this even work?

So what is the advantage?

Not removing any operations

Seeks are just shorter…

2323

Log-Structured/Journaling File System

Radically different file system design

Technology motivations:
CPUs outpacing disks: I/O becoming more-and-more of a
bottleneck

Large RAM: file caches work well, making most disk traffic writes

Problems with (then) current file systems:
Lots of little writes

Synchronous: wait for disk in too many places – makes it hard to
win much from RAIDs, too little concurrency

5 seeks to create a new file: (rough order)
1. file i-node (create)

2. file data

3. directory entry

4. file i-node (finalize)

5. directory i-node (modification time)

6. (not to mention bitmap updates)

2424

LFS Basic Idea
Log all data and metadata with efficient, large, sequential writes

Do not update blocks in place – just write new versions in the log

Treat the log as the truth, but keep an index on its contents

Not necessarily good for reads, but trends help

Rely on a large memory to provide fast access through caching

Data layout on disk has “temporal locality” (good for writing), rather

than “logical locality” (good for reading)

Why is this a better? Because caching helps reads but not writes!

2525

Basic idea

We buffer all updates, and write them together in one

big sequential write

Good for the disk

Example above, writes to two different files were written

together (along with the new version of i-node) in one write

How much should we buffer?

What happens if too much? If too little?

But how do we find a file??

All problems in CS solved with another level of indirection ☺

2626

Devil is in the details

Two potential problems:

Log retrieval on cache misses – how do we find

the data?

Wrap-around: what happens when end of disk is

reached?

No longer any big, empty runs available

How to prevent fragmentation?

2727

LFS vs. UFS

27

file1 file2

dir1 dir2

Unix File

System

file1 file2

dir1 dir2

Log-Structured

File System

Log

inode

directory

data

inode map

Blocks written to

create two 1-block

files: dir1/file1 and

dir2/file2, in UFS and

LFS

2828

i-node map

A map keeping track of the location of i-nodes

Anytime an i-node is written to disk, the imap is

updated

But is that any better? In a second

Most of the time the imap is in memory, so access is

fast

Updated imap is saved as part of the log!

but how do we find it!

2929

Final piece to the solution

Checkpoint region is written to point to the location of the
imap

Also serves as an indicator of a stable point in the file system
for crash recovery

So, to read a file from LFS:

Read the CR, use it to read and cache the imap

After that, it is identical to FFS

Are reads fast?

3030

What about directories?

When a file is updated, its inode changes (new copy)

We need to update the directory inode (also creating a copy)

We need to update its parent directory

Ugh….what to do?

Inode map helps with that too – just keep track of inode number

and resolve it through inode map

3131

LFS Disk Wrap-Around/Garbage collection

Compact live info to open up large runs of free space

Problem: long-lived information gets copied over-and-over

Thread log through free spaces

Problem: disk fragments, causing I/O to become inefficient again

Solution: segmented log

Divide disk into large, fixed-size segments

Do compaction within a segment; thread between segments

When writing, use only clean segments (i.e. no live data)

Occasionally clean segments: read in several, write out live data in

compacted form, leaving some fragments free

Try to collect long-lived info into segments that never need to be cleaned

Note there is not free list or bit map (as in FFS), only a list of clean

segments

3232

LFS Segment Cleaning
Which segments to clean?

Keep estimate of free space in each segment to help find segments with
lowest utilization

Always start by looking for segment with utilization=0, since those are
trivial to clean…

If utilization of segments being cleaned is U:
write cost = (total bytes read & written)/(new data written) = 2/(1-U) (unless
U is 0)

write cost increases as U increases: U = .9 => cost = 20!

Need a cost of less than 4 to 10; => U of less than .75 to .45

How to clean a segment?
Segment summary block contains map of the segment

Must list every i-node and file block

For file blocks you need {i-number, block #}

Through i-map you check if this block is still being used for the (i-
number, block #)

3333

Is this a good paper?

What were the authors’ goals?

What about the evaluation/metrics?

Did they convince you that this was a good

system/approach?

Does the system/approach meet the “Test of

Time” challenge?

How would you review this paper today?

