Advanced Operating Systems
(CS 202)

Distributed OS— intro and discussion
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Overview

» Hardware Is changing, so software must too

Multicores are here to stay
Architectures are heterogeneous

Applications are unpredictable unlike specialized
systems

» How do operating systems scale?
» Do we need new OS architectures?
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Landscape/motivation

» Systems are diverse
different implementations require different tradeoffs
» Some nice examples
» Cores are increasingly diverse
Different general purpose cores
Accelerators and specialized processors
Typically cannot share an OS with such differences

» Interconnects matter: within cores and across
cores
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What has gone on before?

» Early on, locks were not so expensive
Just use them

» Hardware evolved, memory expensive
Large caches
Cache coherence

NUMA machines

ncreasing gap between memory and
Drocessor

Shared memory expensive!
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Older SMP OS projects

» E.g., Tornado
» Locality matters

» Customize OS to underlying hardware
But now we have high diversity
Cannot have one size fit all

» Use replication as an optimization
» Still good principles
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The Modern Kernel(s)
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The Problem with Modern Kernels

» Modern Operating systems can no longer
take serious advantage of the hardware
they are running on

» There exists a scalabllity issue In the
shared memory model that many modern
kernels abide by

» Cache coherence overhead restricts the
ability to scale to many-cores
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Solution: MultiIKernel

» Treat the machine as a network of
Independent cores

» Make all inter-core communication explicit;
use message passing

» Make OS structure hardware-neutral

> View state as replicated instead of shared
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slower than Shared Memory?
Not at scale
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SUT Walt! | ME A0e Dc
slower than Shared Memory?

» At scale it has been show that message
passing has surpassed shared memory
efficiency

» Shared memory at scale seems to be
plagued by cache misses which cause core
stalls

» Hardware Is starting to resemble a message-
passing network
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Figure 3: Comparison of the cost of updating shared state
using shared memory and message passing.
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The MultiKernel Model
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Figure 1: The multikernel model.
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0
explicit
> All inter-core communication is performed
using explicit messages
» No shared memory between cores aside from
the memory used for messaging channels

» Explicit communication allows the OS to
deploy well-known networking optimizations
to make more efficient use of the interconnect
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neutral

> A multikernel separates the OS structure as
much as possible from the hardware

» Hardware-independence in a multikernel
means that we can isolate the distributed
communication algorithms from hardware
details

» Enable late binding of both the protocol
Implementation and message transport
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View state as replicated

» Shared OS state across cores is replicated
and consistency maintained by exchanging
messages

» Updates are exposed in APl as non-blocking
and split-phase as they can be long
operations

» Reduces load on system interconnect,
contention for memory, overhead for
synchronization; improves scalability

» Preserve OS structure as hardware evolves
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In practice

> Model represents an ideal which may not be
fully realizable

» Certain platform-specific performance
optimizations may be sacrificed — shared L2
cache

» Cost and penalty of ensuring replica
consistency varies on workload, data
volumes and consistency model
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Barrelfish Goals

» Comparable performance to existing commodity OS on
multicore hardware

» Scalabllity to large number of cores under considerable
workload

» Ability to be re-targeted to different hardware without
refactoring

» Exploit message-passing abstraction to achieve good
performance by pipelining and batching messages

» Exploit modularity of OS and place OS functionality
according to hardware topology or load
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System Structure

* Multiple independent OS instances
communicating via explicit messages

 OS instance on each core factored into

privileged-mode CPU driver which is hardware
dependent

user-mode Monitor process: responsible for intercore
communication, hardware independent
» System of monitors and CPU drivers provide
scheduling, communication and low-level
resource allocation

> Device drivers and system services run in user-
level processes
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CPU Drivers

» Enforces protection, performs authorization, time-slices
processes and mediates access to core and hardware

» Completely event-driven, single-threaded and
nonpremptable

» Serially processes events in the form of traps from user
processes or interrupts from devices or other cores

» Performs dispatch and fast local messaging between
pProcesses on core

» Implements lightweight, asynchronous (split-phase)
same-core IPC facility
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Monitors

» Schedulable, single-core user-space
processes

» Collectively coordinate consistency of
replicated data structures through agreement
orotocols

» Responsible for IPC setup

» ldle the core when no other processes on the
core are runnable, waiting for IPI
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Process Structure

» Process is represented by collection of
dispatcher objects, one on each core which
might execute it

» Communication is between dispatchers

» Dispatchers are scheduled by local CPU
driver through upcall interface

» Dispatcher runs a core local user-level thread
scheduler



UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Inter-core communication

» Variant of URPC for cache coherent memory
— region of shared memory used as channel
for cache-line-sized messages

> Implementation tailored to cache-coherence
protocol to minimize number of interconnect
messages

> Dispatchers poll incoming channels for
predetermined time before blocking with
request to notify local monitor when message
arrives
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Memory Management

» Manage set of global resources: physical
memory shared by applications and system
services across multiple cores

» OS code and data stored in same memory -
allocation of physical memory must be
consistent

» Capability system — memory managed through
system calls that manipulate capabillities

» All virtual memory management performed
entirely by user-level code
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System Knowledge Base

>

System knowledge base (SKB) maintains knowledge of
underlying hardware in subset of first-order logic

Populated with information gathered through hardware
discovery, online measurement, pre-asserted facts

SKB allows concise expression of optimization queries

Allocation of device drivers to cores, NUMA-aware memory
allocation in topology aware manner

Selection of appropriate message transports for inter- core
communication
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Implementation

» Separation of CPU driver and monitor adds
constant overhead of local RPC rather than

system calls

> Moving monitor into kernel space Is at the cost
of complex kernel-mode code base

» Differs from current OS designs on reliance on
shared data as default communication
mechanism

Engineering effort to partition data is prohibitive
Requires more effort to convert to replication model

Shared-memory single-kernel model cannot deal with
heterogeneous cores at ISA level
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Evaluation of Barrelfish

» The testing setup was not accurate

making any guantitative conclusions from their
benchmarks would be bad

» Barrelfish performs reasonably on
contemporary hardware

» Barrelfish can scale well with core count

» Gives authors confidence that multikernel can
be a feasible alternative
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Evaluation
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