
Advanced Operating Systems

(CS 202)

Distributed OS– intro and discussion

22

Overview
Hardware is changing, so software must too

Multicores are here to stay

Architectures are heterogeneous

Applications are unpredictable unlike specialized

systems

How do operating systems scale?

Do we need new OS architectures?

2

33

Landscape/motivation
Systems are diverse

different implementations require different tradeoffs

Some nice examples

Cores are increasingly diverse

Different general purpose cores

Accelerators and specialized processors

Typically cannot share an OS with such differences

Interconnects matter: within cores and across

cores

3

44

What has gone on before?
Early on, locks were not so expensive

Just use them

Hardware evolved, memory expensive

Large caches

Cache coherence

NUMA machines

Increasing gap between memory and

processor

Shared memory expensive!

4

55

Older SMP OS projects
E.g., Tornado

Locality matters

Customize OS to underlying hardware

But now we have high diversity

Cannot have one size fit all

Use replication as an optimization

Still good principles

5

The Multikernel: A New OS

Architecture for Scalable

Multicore Systems

By (last names): Baumann, Barham,

Dagand, Harris, Isaacs, Peter,

Roscoe, Schupbach, Singhania

EECS 582 – W16

6

Presented by: Clyde Byrd III

77

The Modern Kernel(s)

EECS 582 – W16

7

Monolithic Microkernel

88

The Problem with Modern Kernels

Modern Operating systems can no longer

take serious advantage of the hardware

they are running on

There exists a scalability issue in the

shared memory model that many modern

kernels abide by

Cache coherence overhead restricts the

ability to scale to many-cores

EECS 582 – W16

8

99

Solution: MultiKernel
Treat the machine as a network of

independent cores

Make all inter-core communication explicit;

use message passing

Make OS structure hardware-neutral

View state as replicated instead of shared
EECS 582 – W16

9

1010

But wait! Isn’t message passing

slower than Shared Memory?
Not at scale

EECS 582 – W16

10

1111

But wait! Isn’t message passing

slower than Shared Memory?
At scale it has been show that message

passing has surpassed shared memory

efficiency

Shared memory at scale seems to be

plagued by cache misses which cause core

stalls

Hardware is starting to resemble a message-

passing network

EECS 582 – W16

11

1212

But wait! Isn’t message passing

slower than Shared Memory?

(cont.)

EECS 582 – W16

12

1313

But wait! Isn’t message passing

slower than Shared Memory?

(cont.)

EECS 582 – W16

13

1414

The MultiKernel Model

EECS 582 – W16

14

1515

Make inter-core communication

explicit
All inter-core communication is performed

using explicit messages

No shared memory between cores aside from

the memory used for messaging channels

Explicit communication allows the OS to

deploy well-known networking optimizations

to make more efficient use of the interconnect

EECS 582 – W16

15

1616

Make OS structure hardware-

neutral
A multikernel separates the OS structure as

much as possible from the hardware

Hardware-independence in a multikernel

means that we can isolate the distributed

communication algorithms from hardware

details

Enable late binding of both the protocol

implementation and message transport

EECS 582 – W16

16

1717

View state as replicated
Shared OS state across cores is replicated

and consistency maintained by exchanging

messages

Updates are exposed in API as non-blocking

and split-phase as they can be long

operations

Reduces load on system interconnect,

contention for memory, overhead for

synchronization; improves scalability

Preserve OS structure as hardware evolves
EECS 582 – W16

17

1818

In practice
Model represents an ideal which may not be

fully realizable

Certain platform-specific performance

optimizations may be sacrificed – shared L2

cache

Cost and penalty of ensuring replica

consistency varies on workload, data

volumes and consistency model

EECS 582 – W16

18

1919

Barrelfish

EECS 582 – W16

19

2020

Barrelfish Goals
Comparable performance to existing commodity OS on

multicore hardware

Scalability to large number of cores under considerable

workload

Ability to be re-targeted to different hardware without

refactoring

Exploit message-passing abstraction to achieve good

performance by pipelining and batching messages

Exploit modularity of OS and place OS functionality

according to hardware topology or load

EECS 582 – W16

20

2121

System Structure
• Multiple independent OS instances
communicating via explicit messages

• OS instance on each core factored into
privileged-mode CPU driver which is hardware
dependent

user-mode Monitor process: responsible for intercore
communication, hardware independent

System of monitors and CPU drivers provide
scheduling, communication and low-level
resource allocation

Device drivers and system services run in user-
level processes

EECS 582 – W16

21

2222

CPU Drivers
Enforces protection, performs authorization, time-slices

processes and mediates access to core and hardware

Completely event-driven, single-threaded and

nonpremptable

Serially processes events in the form of traps from user

processes or interrupts from devices or other cores

Performs dispatch and fast local messaging between

processes on core

Implements lightweight, asynchronous (split-phase)

same-core IPC facility

EECS 582 – W16

22

2323

Monitors
Schedulable, single-core user-space

processes

Collectively coordinate consistency of

replicated data structures through agreement

protocols

Responsible for IPC setup

Idle the core when no other processes on the

core are runnable, waiting for IPI

EECS 582 – W16

23

2424

Process Structure
Process is represented by collection of

dispatcher objects, one on each core which

might execute it

Communication is between dispatchers

Dispatchers are scheduled by local CPU

driver through upcall interface

Dispatcher runs a core local user-level thread

scheduler

EECS 582 – W16

24

2525

Inter-core communication
Variant of URPC for cache coherent memory

– region of shared memory used as channel

for cache-line-sized messages

Implementation tailored to cache-coherence

protocol to minimize number of interconnect

messages

Dispatchers poll incoming channels for

predetermined time before blocking with

request to notify local monitor when message

arrives
EECS 582 – W16

25

2626

Memory Management
Manage set of global resources: physical
memory shared by applications and system
services across multiple cores

OS code and data stored in same memory -
allocation of physical memory must be
consistent

Capability system – memory managed through
system calls that manipulate capabilities

All virtual memory management performed
entirely by user-level code

EECS 582 – W16

26

2727

System Knowledge Base
System knowledge base (SKB) maintains knowledge of

underlying hardware in subset of first-order logic

Populated with information gathered through hardware

discovery, online measurement, pre-asserted facts

SKB allows concise expression of optimization queries

Allocation of device drivers to cores, NUMA-aware memory

allocation in topology aware manner

Selection of appropriate message transports for inter- core

communication

EECS 582 – W16

27

2828

Experiences from Barrelfish

implementation
• Separation of CPU driver and monitor adds
constant overhead of local RPC rather than
system calls

Moving monitor into kernel space is at the cost
of complex kernel-mode code base

Differs from current OS designs on reliance on
shared data as default communication
mechanism

Engineering effort to partition data is prohibitive

Requires more effort to convert to replication model

Shared-memory single-kernel model cannot deal with
heterogeneous cores at ISA level

EECS 582 – W16

28

2929

Evaluation of Barrelfish
The testing setup was not accurate

making any quantitative conclusions from their

benchmarks would be bad

Barrelfish performs reasonably on

contemporary hardware

Barrelfish can scale well with core count

Gives authors confidence that multikernel can

be a feasible alternative

EECS 582 – W16

29

3030

Evaluation

30

