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Overview
Hardware is changing, so software must too

Multicores are here to stay

Architectures are heterogeneous

Applications are unpredictable unlike specialized 

systems

How do operating systems scale?

Do we need new OS architectures?
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Landscape/motivation
Systems are diverse

different implementations require different tradeoffs

Some nice examples

Cores are increasingly diverse

Different general purpose cores

Accelerators and specialized processors

Typically cannot share an OS with such differences

Interconnects matter: within cores and across 

cores
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What has gone on before?
Early on, locks were not so expensive

Just use them

Hardware evolved, memory expensive

Large caches

Cache coherence

NUMA machines 

Increasing gap between memory and 

processor

Shared memory expensive!
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Older SMP OS projects
E.g., Tornado 

Locality matters

Customize OS to underlying hardware

But now we have high diversity

Cannot have one size fit all

Use replication as an optimization

Still good principles
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The Multikernel: A New OS 

Architecture for Scalable 

Multicore Systems

By (last names):  Baumann, Barham, 

Dagand, Harris, Isaacs, Peter, 

Roscoe, Schupbach, Singhania
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The Modern Kernel(s)

EECS 582 – W16
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The Problem with Modern Kernels

Modern Operating systems can no longer 

take serious advantage of the hardware 

they are running on

There exists a scalability issue in the 

shared memory model that many modern 

kernels abide by

Cache coherence overhead restricts the 

ability to scale to many-cores

EECS 582 – W16
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Solution: MultiKernel
Treat the machine as a network of 

independent cores

Make all inter-core communication explicit; 

use message passing

Make OS structure hardware-neutral

View state as replicated instead of shared
EECS 582 – W16
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But wait! Isn’t message passing 

slower than Shared Memory?
Not at scale

EECS 582 – W16
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But wait! Isn’t message passing 

slower than Shared Memory?
At scale it has been show that message 

passing has surpassed shared memory 

efficiency

Shared memory at scale seems to be 

plagued by cache misses which cause core 

stalls

Hardware is starting to resemble a message-

passing network

EECS 582 – W16
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But wait! Isn’t message passing 

slower than Shared Memory? 

(cont.)

EECS 582 – W16
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But wait! Isn’t message passing 

slower than Shared Memory? 

(cont.)

EECS 582 – W16
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The MultiKernel Model

EECS 582 – W16
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Make inter-core communication 

explicit
All inter-core communication is performed 

using explicit messages

No shared memory between cores aside from 

the memory used for messaging channels

Explicit communication allows the OS to 

deploy well-known networking optimizations 

to make more efficient use of the interconnect

EECS 582 – W16
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Make OS structure hardware-

neutral
A multikernel separates the OS structure as 

much as possible from the hardware

Hardware-independence in a multikernel 

means that we can isolate the distributed 

communication algorithms from hardware 

details

Enable late binding of both the protocol 

implementation and message transport

EECS 582 – W16
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View state as replicated
Shared OS state across cores is replicated 

and consistency maintained by exchanging 

messages 

Updates are exposed in API as non-blocking 

and split-phase as they can be long 

operations 

Reduces load on system interconnect, 

contention for memory, overhead for 

synchronization; improves scalability 

Preserve OS structure as hardware evolves 
EECS 582 – W16
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In practice
Model represents an ideal which may not be 

fully realizable

Certain platform-specific performance 

optimizations may be sacrificed – shared L2 

cache 

Cost and penalty of ensuring replica 

consistency varies on workload, data 

volumes and consistency model 

EECS 582 – W16
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Barrelfish

EECS 582 – W16
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Barrelfish Goals
Comparable performance to existing commodity OS on 

multicore hardware 

Scalability to large number of cores under considerable 

workload 

Ability to be re-targeted to different hardware without 

refactoring 

Exploit message-passing abstraction to achieve good 

performance by pipelining and batching messages 

Exploit modularity of OS and place OS functionality 

according to hardware topology or load 

EECS 582 – W16
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System Structure
• Multiple independent OS instances 
communicating via explicit messages 

• OS instance on each core factored into 
privileged-mode CPU driver which is hardware 
dependent 

user-mode Monitor process: responsible for intercore
communication, hardware independent 

System of monitors and CPU drivers provide 
scheduling, communication and low-level 
resource allocation 

Device drivers and system services run in user-
level processes 

EECS 582 – W16
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CPU Drivers
Enforces protection, performs authorization, time-slices 

processes and mediates access to core and hardware 

Completely event-driven, single-threaded and 

nonpremptable

Serially processes events in the form of traps from user 

processes or interrupts from devices or other cores 

Performs dispatch and fast local messaging between 

processes on core 

Implements lightweight, asynchronous (split-phase) 

same-core IPC facility 

EECS 582 – W16
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Monitors
Schedulable, single-core user-space 

processes 

Collectively coordinate consistency of 

replicated data structures through agreement 

protocols 

Responsible for IPC setup 

Idle the core when no other processes on the 

core are runnable, waiting for IPI 

EECS 582 – W16
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Process Structure
Process is represented by collection of 

dispatcher objects, one on each core which 

might execute it 

Communication is between dispatchers 

Dispatchers are scheduled by local CPU 

driver through upcall interface 

Dispatcher runs a core local user-level thread 

scheduler 

EECS 582 – W16
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Inter-core communication
Variant of URPC for cache coherent memory 

– region of shared memory used as channel 

for cache-line-sized messages 

Implementation tailored to cache-coherence 

protocol to minimize number of interconnect 

messages

Dispatchers poll incoming channels for 

predetermined time before blocking with 

request to notify local monitor when message 

arrives 
EECS 582 – W16
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Memory Management
Manage set of global resources: physical 
memory shared by applications and system 
services across multiple cores 

OS code and data stored in same memory -
allocation of physical memory must be 
consistent 

Capability system – memory managed through 
system calls that manipulate capabilities 

All virtual memory management performed 
entirely by user-level code 

EECS 582 – W16
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System Knowledge Base
System knowledge base (SKB) maintains knowledge of 

underlying hardware in subset of first-order logic 

Populated with information gathered through hardware 

discovery, online measurement, pre-asserted facts 

SKB allows concise expression of optimization queries

Allocation of device drivers to cores, NUMA-aware memory 

allocation in topology aware manner 

Selection of appropriate message transports for inter- core 

communication 

EECS 582 – W16
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Experiences from Barrelfish

implementation
• Separation of CPU driver and monitor adds 
constant overhead of local RPC rather than 
system calls 

Moving monitor into kernel space is at the cost 
of complex kernel-mode code base 

Differs from current OS designs on reliance on 
shared data as default communication 
mechanism 

Engineering effort to partition data is prohibitive 

Requires more effort to convert to replication model 

Shared-memory single-kernel model cannot deal with 
heterogeneous cores at ISA level 

EECS 582 – W16

28



2929

Evaluation of Barrelfish
The testing setup was not accurate

making any quantitative conclusions from their 

benchmarks would be bad

Barrelfish performs reasonably on 

contemporary hardware

Barrelfish can scale well with core count

Gives authors confidence that multikernel can 

be a feasible alternative 

EECS 582 – W16
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Evaluation
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