
Advanced Operating Systems

(CS 202)

Read Copy Update (RCU)

22

Linux Synch. Primitives
Technique Description Scope

Per-CPU
variables

Duplicate a data structure
among CPUs

All CPUs

Atomic operation Atomic read-modify-write
instruction

All

Memory barrier Avoid instruction re-ordering Local CPU

Spin lock Lock with busy wait All

Semaphore Lock with blocking wait (sleep) All

Seqlocks Lock based on access counter All

Local interrupt
disabling

Forbid interrupt on a single CPU Local

Local softirq
disabling

Forbid deferrable function on a
single CPU

Local

Read-copy-
update (RCU)

Lock-free access to shared data
through pointers

All

33

Why are we reading this paper?
Example of a synchronization primitive that is:

Lock free (mostly/for reads)

Tuned to a common access pattern

Making the common case fast

What is this common pattern?

A lot of reads

Writes are rare

Prioritize writes

Ok to read a slightly stale copy

But that can be fixed too

3

44

Traditional OS locking designs
complex

poor concurrency

Fail to take advantage of event-driven nature

of operating systems

4

55

Motivation

Locks have acquire and release cost

Each uses atomic operations which are expensive

Can dominate cost for short critical regions

Locks become the bottleneck

Readers/writers lock is also expensive – uses

atomic increment/decrement for reader count

5

66

Lock free data structures
Do not require locks

Good if contention is rare

But difficult to create and error prone

RCU is a mixture

Concurrent changes to pointers a challenge for

lock-free

RCU serializes writers using locks

Win if most of our accesses are reads

6

77

Race Between Teardown and Use of Service

7

Can fix with
locking, but we
have to use the
lock every
operation

88

Read-Copy Update Handling Race

8

quiescent state

When

Cannot be

context switched

inside RCU

99

Typical RCU update sequence
Replace pointers to a data structure with pointers

to a new version

Is this replacement atomic?

Wait for all previous reader to complete their RCU

read-side critical sections.

At this point, there cannot be any readers who

hold reference to the data structure, so it now may

safely be reclaimed.

9

1010

Read-Copy Search

10

Reference-Counted Search

Read-Copy Search

1111

Read-Copy Deletion

11

18

Reference-counted Deletion Read-Copy Deletion

1212

Read-Copy Deletion (delete B)

12

1313

the first phase of the update

13

18

1414

Read-Copy Deletion

14

When

1515

Read-Copy Deletion

15

1717

Simple Grace-Period Detection

17

1818

wait_for_rcu() I

18

1919

wait_for_rcu() II

19

2020

Implementations of Quiescent State
1. simply execute onto each CPU in turn.

2. use context switch, execution in the idle loop,
execution in user mode, system call entry, trap
from user mode as the quiescent states.

3. voluntary context switch as the sole quiescent

state

4. tracks beginnings and ends of operations

20

2121

Implementation (option 4)
Generation counter for each RCU region

Generation updated on write

Every read increments generation counter

going in

And decrements it going out

Quiescence = counter is zero

21

2222

RCU usage in Linux

22
Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html

2323

RCU as percentage of all locking

in linux

23
Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html

2424

SeqLock
Another special synchronization primitive

Goal is to avoid writer starvation in reader

writer locks

Has a lock and a sequence number

Lock for writers only

Writer increments sequence number after

acquiring lock and before releasing lock

Readers do not block
But can check sequence number

24

