Advanced Operating Systems
(CS 202)

Read Copy Update (RCU)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

UNIVERSITY QOF CALIFQRMNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE R IVERS I D E

Linux Synch. Primitives

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Why are we reading this paper?
» Example of a synchronization primitive that is:
Lock free (mostly/for reads)

Tuned to a common access pattern
Making the common case fast

» What is this common pattern?
A lot of reads
Writes are rare
Prioritize writes

Ok to read a slightly stale copy
» But that can be fixed too

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Traditional OS locking designs
> complex
> POOr concurrency

» Fail to take advantage of event-driven nature
of operating systems

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Motivation

» Locks have acquire and release cost
Each uses atomic operations which are expensive
Can dominate cost for short critical regions
Locks become the bottleneck

» Readers/writers lock is also expensive — uses
atomic increment/decrement for reader count

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Lock free data structures

» Do not require locks
» Good If contention Is rare
» But difficult to create and error prone

» RCU Is a mixture

Concurrent changes to pointers a challenge for
lock-free

RCU serializes writers using locks
Win If most of our accesses are reads

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Race Between Teardown and Use of Service

Client 2 ——H00—/—/—-- """ -~ - -—

Module \ m
Client 1 / / -—

————————————————————————————————

————————————————————————————————

Figure 1: Race Between Teardown and Use of Ser-
vice

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Read-Copy Update Handling Race

WAV

————————————————————————————————

————————————————————————————————

quiescent state
Figure 2: Read-Copyv Update Handling Race

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Typical RCU update sequence

» Replace pointers to a data structure with pointers

to a new version
Is this replacement atomic?

» Wait for all previous reader to complete their RCU
read-side critical sections.

> At this point, there cannot be any readers who
hold reference to the data structure, so it now may
safely be reclaimed.

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RIVE RS I D E

Read-Copy Search

1 struct el search(long addr)

2 { 1 struct el *search(long addr)
3 read_lock(&list_lock); 2 {

4 p = head->next; 3 struct el *p;

5 while (p != head) { 5 p = head->next;

6 if (p—>address == addr) { 6 while (p != head) {

7 atomic_inc (&p->refcnt) 7 if (p->address == addr) {
8 read_unlock(&list_lock) ; 8 return (p);

o) return (p); 9 }

10 } 10 p = p->next;

11 p = p—>next; 11 }

12 ¥ 12 return (NULL);

13 read_unlock(&list_lock) ; 13 }

14 return (NULL);

15 }

Read-Copy Search
Reference-Counted Search

10

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Read-Copy Deletion

struct el delete(struct el *p)

{
write_lock(&list_lock);
p—>next->prev = p->prev;
p->prev->next = p->next;
release(p);
write_unlock(&list_lock);

00O ~NOOL b WN -

A

Reference-counted Deletion

1 void delete(struct el *p)
2 {

3 spin_lock(&list_lock);

L p->next->prev = p->prev,;
) p—>prev->next = p->next;
6 spin_unlock(&list_lock);
7 kfree_rcu(p, NULL);

8 }

Read-Copy Deletion

11

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Read-Copy Deletion (delete B)

Header Updater Reader
A B C
i 1

Figure 11: List Initial State

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

the first phase of the update

Header Updater Reader
A M B (del) ; C
t 1

Figure 12: Element B Unlinked From List

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Read-Copy Deletion

Header Updater tasklet sched Reader

- _lu.te_[na,l lists l
-
/ \

Al B(del) :)c
= 71

~
Figure 13: List After Grace Period When

14

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Read-Copy Deletion

Header Updater Reader

Figure 14: List After Element B Returned to Freel-

1st

15

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Simple Grace-Period Detection

CPU 0

CPU 1

CPU 2

CPU 3

A

—

Minimum Grace Period Detected

I . | |
ﬁ B D [~
“\E‘i E
Fiu G, |—
S 1 I K -
L M :] N —
| |_I

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

walit_for_rcu() |

1 void wait_for_ _rcuf{wvoid)

2 {
3 unsigned long cpus_allowed;
4 unsigned long policy;
5 unsigned long rt_priority;
6 /* Save current state */
o cpus_allowed = current—->cpus_allowed;
= policy = current->policy;
o rt_priority = current->rt_priority;
< 10 /* Create an unreal time task. */
11 current->policy = SCHED_FIFO;
12 current—->rt_priority = 1001 +
13 aya_sched_get_pricority_max (SCHED_FIFO) ;
14 /#* Make us schedulable on all CPUs. =*/
15 current—->cpus_allowad =
{16 (1UL<<smp_num_cpus)—1;

18

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

wait_for_rcu() Il

18 | /* Eliminate current cpu, reschedule */]

19
20
21
22
23
24
25
26
27 ¥

while ((current->cpus_allowed &= ~(1 <<
cpu_number _map
smp_processor_1id()))) '= 0)

oK
lf* Back to normal. */]

current->cpus_allowed = cpus_allowed,
current->policy = policy;
current->rt_priority = rt_priority,

19

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C RIVE Rs I D E

Implementations of Quiescent State
simply execute onto each CPU in turn.

use context switch, execution in the idle loop,
execution in user mode, system call entry, trap
from user mode as the guiescent states.

voluntary context switch as the sole quiescent
state

tracks beginnings and ends of operations

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

Implementation (option 4)
» Generation counter for each RCU region
» Generation updated on write
> Every read increments generation counter
going in
And decrements it going out
» Quiescence = counter is zero

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R IV E RS I D E

RCU usaaqe in Llinluxl

14000 .
12000 -
168000 -
]
&
2 gees |
-
.
=
=
S seee -
£
4800 |
2000 |
B 1
o T 1=} ==} = o 0T 1=} ==}
= = = = -] -] -] -] -]
= = = = = = = = =
ol =]] =] =] =] =] ol =]

Year

Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html d

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R iVETRFSiIDFE
RCU as percentage of all focking
In linux

18

RCU Uses as # of Locking
o

1
=] o w ==} = o o 2=} ==
=]] = = - -) - -
= =] = = = = =] =] =]
ol 2] ol ol] ol 2] o 2]

Year

Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html

23

CRIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

SeglLock

> Another special synchronization primitive

» Goal Is to avoid writer starvation in reader
writer locks

» Has a lock and a sequence number

Lock for writers only
Writer increments sequence number after
acquiring lock and before releasing lock

» Readers do not block
» But can check sequence number

