
Transactional Memory

Prof. Hsien-Hsin S. Lee

School of Electrical and Computer Engineering

Georgia Tech

(Adapted from Stanford TCC group and MIT SuperTech Group)

2

Motivation

• Uniprocessor Systems

– Frequency

– Power consumption

– Wire delay limits scalability

– Design complexity vs. verification effort

– Where is ILP?

• Support for multiprocessor or multicore systems

– Replicate small, simple cores, design is scalable

– Faster design turnaround time, Time to market

– Exploit TLP, in addition to ILP within each core

– But now we have new problems

3

Parallel Software Problems

• Parallel systems are often programmed with

– Synchronization through barriers

– Shared objects access control through locks

• Lock granularity and organization must balance performance

and correctness

– Coarse-grain locking: Lock contention

– Fine-grain locking: Extra overhead

– Must be careful to avoid deadlocks or data races

– Must be careful not to leave anything unprotected for correctness

• Performance tuning is not intuitive

– Performance bottlenecks are related to low level events

• E.g. false sharing, coherence misses

– Feedback is often indirect (cache lines, rather than variables)

4

Parallel Hardware Complexity (TCC’s view)

• Cache coherence protocols are complex

– Must track ownership of cache lines

– Difficult to implement and verify all corner cases

• Consistency protocols are complex

– Must provide rules to correctly order individual loads/stores

– Difficult for both hardware and software

• Current protocols rely on low latency, not bandwidth

– Critical short control messages on ownership transfers

– Latency of short messages unlikely to scale well in the future

– Bandwidth is likely to scale much better

• High speed interchip connections

• Multicore (CMP) = on-chip bandwidth

5

What do we want?

• A shared memory system with

– A simple, easy programming model (unlike message passing)

– A simple, low-complexity hardware implementation (unlike shared

memory)

– Good performance

6

Lock Freedom

• Why lock is bad?

• Common problems in conventional locking mechanisms in

concurrent systems

– Priority inversion: When low-priority process is preempted while

holding a lock needed by a high-priority process

– Convoying: When a process holding a lock is de-scheduled (e.g. page

fault, no more quantum), no forward progress for other processes

capable of running

– Deadlock (or Livelock): Processes attempt to lock the same set of

objects in different orders (could be bugs by programmers)

• Error-prone

7

Using Transactions

• What is a transaction?

– A sequence of instructions that is guaranteed to execute and

complete only as an atomic unit

Begin Transaction

Inst #1

Inst #2

Inst #3

…

End Transaction

– Satisfy the following properties

• Serializability: Transactions appear to execute serially.

• Atomicity (or Failure-Atomicity): A transaction either

– commits changes when complete, visible to all; or

– aborts, discarding changes (will retry again)

8

TCC (Stanford) [ISCA 2004]

• Transactional Coherence and Consistency

• Programmer-defined groups of instructions within a program
Begin Transaction Start Buffering Results

Inst #1

Inst #2

Inst #3

…

End Transaction Commit Results Now

• Only commit machine state at the end of each transaction

– Each must update machine state atomically, all at once

– To other processors, all instructions within one transaction appear to

execute only when the transaction commits

– These commits impose an order on how processors may modify

machine state

9

Transaction Code Example

• MIT LTM instruction set

xstart:

XBEGIN on_abort

lw r1, 0(r2)

addi r1, r1, 1

. . .

XEND

. . .

on_abort:

… // back off

j xstart // retry

10

Transactional Memory

• Transactions appear to execute in commit order

– Flow (RAW) dependency cause transaction violation and restart

ld 0xdddd

...

st 0xbeef

Transaction A

Time

ld 0xbeef

Transaction C

ld 0xbeef

Re-execute

with new data

Commit

Arbitrate

ld 0xdddd

...

ld 0xbbbb

Transaction B

Commit

Arbitrate
Violation!

0xbeef

0xbeef

11

Transactional Memory

• Output and Anti-dependencies are automatically handled

– WAW are handled by writing buffers only in commit order (think about

sequential consistency)

Transaction A

Store X

Transaction B

Commit X

Shared Memory

Local

buffer Local

buffer

Store X

Commit X

12

Transactional Memory

• Output and Anti-dependencies are automatically handled

– WAW are handled by writing buffers only in commit order

– WAR are handled by keeping all writes private until commit

Transaction A

Store X

Transaction B

Commit X

Shared Memory

Local

buffer Local

buffer

Store X

Commit X

Transaction A

Transaction B

Commit X

ST X = 1

Commit X

ST X = 3

LD X (=3)

LD X (=3)

LD X (=1)

X = 1

X = 3

L
o
c
a
l s

to
re

s

s
u
p
p
ly

 d
a
ta

13

TCC System

• Similar to prior thread-level speculation (TLS) techniques

– CMU Stampede

– Stanford Hydra

– Wisconsin Multiscalar

– UIUC speculative multithreading CMP

• Loosely coupled TLS system

• Completely eliminates conventional cache coherence and

consistency models

– No MESI-style cache coherence protocol

• But require new hardware support

14

The TCC Cycle

• Transactions run in a cycle

• Speculatively execute code and buffer

• Wait for commit permission

– Phase provides synchronization, if

necessary

– Arbitrate with other processors

• Commit stores together (as a packet)

– Provides a well-defined write ordering

– Can invalidate or update other caches

– Large packet utilizes bandwidth

effectively

• And repeat

15

Advantages of TCC

• Trades bandwidth for simplicity and latency tolerance

– Easier to build

– Not dependent on timing/latency of loads and stores

• Transactions eliminate locks

– Transactions are inherently atomic

– Catches most common parallel programming errors

• Shared memory consistency is simplified

– Conventional model sequences individual loads and stores

– Now only have hardware sequence transaction commits

• Shared memory coherence is simplified

– Processors may have copies of cache lines in any state (no MESI !)

– Commit order implies an ownership sequence

16

How to Use TCC

• Divide code into potentially parallel tasks

– Usually loop iterations

– For initial division, tasks = transactions

• But can be subdivided up or grouped to match HW limits

(buffering)

– Similar to threading in conventional parallel programming, but:

• We do not have to verify parallelism in advance

• Locking is handled automatically

• Easier to get parallel programs running correctly

• Programmer then orders transactions as necessary

– Ordering techniques implemented using phase number

– Deadlock-free (At least one transaction is the oldest one)

– Livelock-free (watchdog HW can easily insert barriers anywhere)

17

How to Use TCC
• Three common ordering scenarios

– Unordered for purely parallel tasks

– Fully ordered to specify sequential task (algorithm level)

– Partially ordered to insert synchronization like barriers

18

Basic TCC Transaction Control Bits

• In each local cache

– Read bits (per cache line, or per word to eliminate false sharing)

• Set on speculative loads

• Snooped by a committing transaction (writes by other CPU)

– Modified bits (per cache line)

• Set on speculative stores

• Indicate what to rollback if a violation is detected

• Different from dirty bit

– Renamed bits (optional)

• At word or byte granularity

• To indicate local updates (WAR) that do not cause a violation

• Subsequent reads that read lines with these bits set, they do NOT

set read bits because local WAR is not considered a violation

19

During A Transaction Commit

• Need to collect all of the modified caches together into a

commit packet

• Potential solutions

– A separate write buffer, or

– An address buffer maintaining a list of the line tags to be committed

– Size?

• Broadcast all writes out as one single (large) packet to the

rest of the system

20

Re-execute A Transaction

• Rollback is needed when a transaction cannot commit

• Checkpoints needed prior to a transaction

• Checkpoint memory

– Use local cache

– Overflow issue

• Conflict or capacity misses require all the victim lines to be kept

somewhere (e.g. victim cache)

• Checkpoint register state

– Hardware approach: Flash-copying rename table / arch register file

– Software approach: extra instruction overheads

21

Sample TCC Hardware

• Write buffers and L1 Transaction Control Bits

– Write buffer in processor, before broadcast

• A broadcast bus or network to distribute commit packets

– All processors see the commits in a single order

– Snooping on broadcasts triggers violations, if necessary

• Commit arbitration/sequence logic

22

Ideal Speedups with TCC

• equake_l : long transactions

• equake_s : short transactions

23

Speculative Write Buffer Needs

• Only a few KB of write buffering needed

– Set by the natural transaction sizes in applications

– Small write buffer can capture 90% of modified state

– Infrequent overflow can be always handled by committing early

24

Broadcast Bandwidth

• Broadcast is bursty

• Average bandwidth

– Needs ~16 bytes/cycle @ 32 processors with whole modified lines

– Needs ~8 bytes/cycle @ 32 processors with dirty data only

• High, but feasible on-chip

25

TCC vs MESI [PACT 2005]

• Application, Protocol + Processor count

26

Implementation of MIT’s LTM [HPCA 05]

• Transactional Memory should support transactions of

arbitrary size and duration

• LTM ─ Large Transactional Memory

• No change in cache coherence protocol

• Abort when a memory conflict is detected

– Use coherency protocol to check conflicts

– Abort (younger) transactions during conflict resolution to guarantee

forward progress

• For potential rollback

– Checkpoint rename table and physical registers

– Use local cache for all speculative memory operations

– Use shared L2 (or low level memory) for non-speculative data storage

27

Multiple In-Flight Transactions

• During instruction decode:

– Maintain rename table and “saved” bits in physical registers

– “Saved” bits track registers mentioned in current rename table

• Constant # of set bits: every time a register is added to “saved” set we

also remove one

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P1, …

Saved Set

{P1, …}decode

28

Multiple In-Flight Transactions

• When XBEGIN is decoded

– Snapshots taken of current rename table and S bits

– This snapshot is not active until XBEGIN retires

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P1, …

R1 P2, …

Saved Set

{P1, …}

{P2, …}decode

29

Multiple In-Flight Transactions

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P1, …

R1 P2, …

Saved Set

{P1, …}

{P2, …}decode

30

Multiple In-Flight Transactions

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P1, …

R1 P2, …

Saved Set

{P1, …}

{P2, …}decode

31

Multiple In-Flight Transactions

• When XBEGIN retires

– Snapshots taken at decode become active, which will prevent P1 from reuse

– 1st transaction queued to become active in memory

– To abort, we just restore the active snapshot’s rename table

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P1, …

R1 P2, …

Saved Set

{P1, …}

{P2, …}decode

retire

Active

snapshot

32

Multiple In-Flight Transactions

• We are only reserving registers in the active set

– This implies that exactly # of arch registers are saved

– This number is strictly limited, even as we speculatively execute

through multiple transactions

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P1, …

R1 P2, …

R1 P3, …

Saved Set

{P1, …}

{P2, …}

{P3, …}decode

retire

Active

snapshot

33

Multiple In-Flight Transactions

• Normally, P1 would be freed here

• Since it is in the active snapshot’s “saved” set, we place it

onto the register reserved list

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P1, …

R1 P2, …

R1 P3, …

Saved Set

{P1, …}

{P2, …}

{P3, …}decode

retire

Active

snapshot

34

Multiple In-Flight Transactions

• When XEND retires:

– Reserved physical registers (e.g. P1) are freed, and active snapshot

is cleared

– Store queue is empty

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P2, …

R1 P3, …

Saved Set

{P2, …}

{P3, …}decode

retire

35

Multiple In-Flight Transactions

• Second transaction becomes active in memory

Original

XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

Rename Table

R1 P2, …

Saved Set

{P2, …}retire

Active

snapshot

36

Cache Overflow Mechanism

• Need to keep

– Current (speculative) values

– Rollback values

• Common case is commit, so keep Current in cache

• Problem:

– uncommitted current values do not fit in local cache

• Solution

– Overflow hashtable as extension of cache

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable
key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

37

Cache Overflow Mechanism

• T bit per cache line

– Set if accessed during a transaction

• O bit per cache set

– Indicate set overflow

• Overflow storage in physical DRAM

– Allocate and resize by the OS

– Search when miss : complexity of a page table
walk

– If a line is found, swapped with a line in the set

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable
key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

38

Cache Overflow Mechanism

• Start with non-transactional data in the

cache

1000 55

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable
key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

39

Cache Overflow Mechanism

• Transactional read sets the T bit

1 1000 55

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable
key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

40

Cache Overflow Mechanism

• Expect most transactional writes fit in the

cache

1 1000 55 1 2000 66

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable
key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

41

Cache Overflow Mechanism

• A conflict miss

• Overflow sets O bit

• Replacement taken place (LRU)

• Old data spilled to DRAM (hashtable)

1 3000 77 1 2000 661

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable

1000 55

key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

42

Cache Overflow Mechanism

• Miss to an overflowed line, checks

overflow table

• If found, swap (like a victim cache)

• Else, proceed as miss

1 1000 55 1 2000 661

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable

3000 77

key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

43

Cache Overflow Mechanism

• Abort

– Invalidate all lines with T set (assume L2 or
lower level memory contains original values)

– Discard overflow hashtable

– Clear O and T bits

• Commit

– Write back hashtable; NACK interventions
during this

– Clear O and T bits in the cache

0 1000 55 0 2000 660

O T tag data
Way 0

T tag data
Way 1

Overflow Hashtable

3000 77

key data

ST 1000, 55

XBEGIN L1

LD R1, 1000

ST 2000, 66

ST 3000, 77

LD R1, 1000

XEND

L2

44

LTM vs. Lock-based

45

Further Readings

• M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” ISCA 1993.

• R. Rajwar and J. R. Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001

• R. Rajwar and J. R. Goodman, “Transactional Lock-Free Execution of
Lock-Based Programs,” ASPLOS 2002

• J. F. Martinez and J. Torrellas, “Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS
2002

• L. Hammond, V. Wong, M. Chen, B. D. Calrstrom, J. D. Davis, B.
Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukoton
“Transactional Memory Coherence and Consistency,” ISCA 2004

• C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, S. Lie,
“Unbounded Transactional Memory,” HPCA 2005

• A. McDonald, J. Chung, H. Chaf, C. C. Minh, B. D. Calrstrom, L.
Hammond, C. Kozyrakis and K. Olukotun, “Characterization of TCC on a
Chip-Multiprocessors,” PACT 2005.

