
CS 202: Advanced

Operating Systems

OS Extensibility: Exo-kernel

Extensibility

Problem: How?

Add code to OS

how to preserve isolation?

… without killing performance?

What abstractions?

General principle: mechanisms in OS, policies

through the extensions

What mechanisms to expose?

2

Spin Approach to extensibility

Co-location of kernel and extension

Avoid border crossings

But what about protection?

Language/compiler forced protection

Strongly typed language

Protection by compiler and run-time

Cannot cheat using pointers

Logical protection domains

No longer rely on hardware address spaces to enforce

protection – no boarder crossings

Dynamic call binding for extensibility

3

ExoKernel

4

Motivation for Exokernels

Traditional centralized resource management

cannot be specialized, extended or replaced

Privileged software must be used by all

applications

Fixed high level abstractions too costly for

good efficiency

Exo-kernel as an end-to-end argument

5

Exokernel Philosophy

Expose hardware to libraryOS

Not even mechanisms are implemented

by exo-kernel

They argue that mechanism is policy

Exo-kernel worried only about

protection not resource management

6

Design Principles

Track resource ownership

Ensure protection by guarding resource

usage

Revoke access to resources

Expose hardware, allocation, names and

revocation

Basically validate binding, then let library

manage the resource

7

Exokernel Architecture

8

Separating Security from Management

Secure bindings – securely bind machine

resources

Visible revocation – allow libOSes to

participate in resource revocation

Abort protocol – break bindings of

uncooperative libOSes

9

Secure Bindings

Decouple authorization from use

Authorization performed at bind time

Protection checks are simple operations

performed by the kernel

Allows protection without understanding

Operationally – set of primitives needed for

applications to express protection checks

10

Example resource

TLB Entry

Virtual to physical mapping done by library

Binding presented to exo-kernel

Exokernel puts it in hardware TLB

Process in library OS then uses it without exo-

kernel intervention

11

Implementing Secure Bindings

Hardware mechanisms: TLB entry, Packet

Filters

Software caching: Software TLB stores

Downloaded Code: invoked on every

resource access or event to determine

ownership and kernel actions

12

Downloaded Code Example: (DPF)

Downloaded Packet Filter

Eliminates kernel crossings

Can execute when application is not
scheduled

Written in a type safe language and compiled
at runtime for security

Uses Application-specific Safe Handlers
which can initiate a message to reduce round
trip latency

13

Visible Resource Revocation

Traditionally resources revoked invisibly

Allows libOSes to guide de-allocation and

have knowledge of available resources – ie:

can choose own ‘victim page’

Places workload on the libOS to organize

resource lists

14

Abort Protocol

Forced resource revocation

Uses ‘repossession vector’

Raises a repossession exception

Possible relocation depending on state of

resource

15

Managing core services

Virtual memory:

Page fault generates an upcall to the library OS

via a registered handler

LibOS handles the allocation, then presents a

mapping to be installed into the TLB providing a

capability

Exo-kernel installs the mapping

Software TLBs

16

Managing CPU

A time vector that gets allocated to the different

library operating systems

Allows allocation of CPU time to fit the application

Revokes the CPU from the OS using an upcall

The libOS is expected to save what it needs and give

up the CPU

If not, things escalate

Can install revocation handler in exo-kernel

17

Putting it all together

Lets consider an exo-kernel with downloaded

code into the exo-kernel

When normal processing occurs, Exo-kernel

is a sleeping beauty

When a discontinuity occurs (traps, faults,

external interrupts), exokernel fields them

Passes them to the right OS (requires book-

keeping) – compare to SPIN?

Application specific handlers

18

Evaluation

Again, a full implementation

How to make sense from the quantitative

results?

Absolute numbers are typically meaningless given

that we are part of a bigger system

Trends are what matter

Again, emphasis is on space and time

Key takeaway→ at least as good as a monolithic

kernel

19

Questions and conclusions

Downloaded code – security?

Some mention of SFI and little languages

SPIN is better here?

SPIN vs. Exokernel

Spin—extend mechanisms; some abstractions still exist

Exo-kernel: securely expose low-level primitives (primitive vs.

mechanism?)

Microkernel vs. exo-kernel

Much lower interfaces exported

Argue they lead to better performance

Of course, less border crossing due to downloadable code

20

Conclusions

Simplicity and limited exokernel primitives can

be implemented efficiently

Hardware multiplexing can be fast and efficient

Traditional abstractions can be implemented at

the application level

Applications can create special purpose

implementations by modifying libraries

21

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: Extensibility
	Slide 3: Spin Approach to extensibility
	Slide 4: ExoKernel
	Slide 5: Motivation for Exokernels
	Slide 6: Exokernel Philosophy
	Slide 7: Design Principles
	Slide 8: Exokernel Architecture
	Slide 9: Separating Security from Management
	Slide 10: Secure Bindings
	Slide 11: Example resource
	Slide 12: Implementing Secure Bindings
	Slide 13: Downloaded Code Example: (DPF) Downloaded Packet Filter
	Slide 14: Visible Resource Revocation
	Slide 15: Abort Protocol
	Slide 16: Managing core services
	Slide 17: Managing CPU
	Slide 18: Putting it all together
	Slide 19: Evaluation
	Slide 20: Questions and conclusions
	Slide 21: Conclusions

