
CS 202: Advanced Operating

Systems

Extensible Operating Systems

Extensibility

What do we mean by extensibility?

Flexible to add new features/functionalities

Good efficiency

Good security

Can you give a few examples?

Device drivers

Browser plugins/extensions

2

Existing Approaches

Directly insert code modules

E.g., Loadable kernel module

Good efficiency

Bad security

Put into a new process

E.g., User-mode driver (e.g., FUSE)

E.g., Microsoft puts browser plugin into a new

process

Good security

Bad efficiency (context switch/mode switch)

How expensive are border crossings?

Procedure call: save some general-purpose registers

and jump

Mode switch:

Trap or call gate overhead

Nowadays syscall/sysreturn

Switch to kernel stack

Switch some segment registers

Context switch?

Change address space

This could be expensive; flush TLB, …

4

OS design models

Library OS

Monolithic Kernel

Micro Kernel

OS as library (DOS-like)

6

Hardware, managed by OS

OS Services and Device drivers

Applications

Monolithic Kernel

7

Hardware, managed by OS

OS Services and Device drivers

Applications

What is the difference?

Micro-kernel

8

Hardware, managed by OS

Micro-kernel

Applications

File

System

Memory

manager
CPU

scheduler

IPC, Address

Spaces, …

Summary

DOS-like structure:

good performance and extensibility

Bad protection

Monolithic kernels:

Good performance and protection

Bad extensibility

Microkernels

Very good protection

Good extensibility

Bad performance!

9

Existing Approaches (cont’ed)

Language Runtime

JavaScript for Browser

SPIN for OS

Good efficiency

Good security

Software Fault Isolation (not required)

E.g., Google NativeClient

What should an extensible OS do?

It should be thin, like a micro-kernel

Only mechanisms (or even less?)

no policies; they are defined by extensions

Fast access to resources, like DOS

Eliminate border crossings

Flexibility without sacrificing protection or

performance

Basically, fast, protected and flexible

11

Spin Approach to extensibility

Co-location of kernel and extension

Avoid border crossings

But what about protection?

Language/compiler forced protection

Strongly typed language

Protection by compiler and run-time

Cannot cheat using pointers

Logical protection domains

No longer rely on hardware address spaces to enforce

protection – no boarder crossings

Dynamic call binding for extensibility

12

Logical protection domains

Modula-3 safety and encapsulation mechanisms

Type safety, automatic storage management

Objects, threads, exceptions and generic interfaces

Fine-grained protection of objects using

capabilities. An object can be:

Hardware resources (e.g., page frames)

Interfaces (e.g., page allocation module)

Collection of interfaces (e.g., full VM)

Capabilities are language supported pointers

13

Logical protection domains -- mechanisms

Create:

Initialize with object file contents and export names

Resolve:

Names are resolved between a source and a target domain

Once resolved, access is at memory speeds

Combine

To create an aggregate domain

This is the key to spin – protection, extensibility and

performance

14

Protection Model (I)

All kernel resources are referenced by

capabilities [tickets]

SPIN implements capabilities directly through

the use of pointers

Compiler prevents pointers to be forged or

dereferenced in a way inconsistent with its

type at compile time:

No run time overhead for using a pointer

Protection Model (II)

A pointer can be passed to a user-level

application through an externalized

reference:

Index into a per-application table of safe

references to kernel data structures

Protection domains define the set of names

accessible to a given execution context

Spin

17

Hardware, managed by OS

spin

File

System

Memory

manager

CPU

scheduler

IPC, Address

Spaces, …

Network

File

System

Memory

manager

CPU

scheduler

Spin Mechanisms for Events

Spin extension model is based on events and handlers

Which provide for communication between the base and the

extensions

Events are routed by the Spin Dispatcher to handlers

Handlers are typically extension code called as a procedure by

the dispatcher

One-to-one, one-to-many or many-to-one

All handlers registered to an event are invoked

Guards may be used to control which handler is used

18

Event example

19

Default Core services in SPIN

Memory management (of memory allocated

to the extension)

Physical address

Allocate, deallocate, reclaim

Virtual address

Allocate, deallocate

Translation

Create/destory AS, add/remove mapping

Event handlers

Page fault, access fault, bad address

20

CPU Scheduling

Spin abstraction: strand

Semantics defined by extension

Event handlers

Block, unblock, checkpoint, resume

Spin global scheduler

Interacts with extension threads package

21

Experiments

System Components

Microbenchmarks

Protected communication

Thread management

Virtual memory

Networking

End-to- end Performance

22

Conclusions

Extensibility, protection and performance

Extensibility and protection provided by

language/compiler features and run-time checks

Instead of hardware address spaces

…which gives us performance—no border crossing

Who are we trusting? Consider application and

Spin

How does this compare to Exo-kernel?

23

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: Extensibility
	Slide 3: Existing Approaches
	Slide 4: How expensive are border crossings?
	Slide 5: OS design models
	Slide 6: OS as library (DOS-like)
	Slide 7: Monolithic Kernel
	Slide 8: Micro-kernel
	Slide 9: Summary
	Slide 10: Existing Approaches (cont’ed)
	Slide 11: What should an extensible OS do?
	Slide 12: Spin Approach to extensibility
	Slide 13: Logical protection domains
	Slide 14: Logical protection domains -- mechanisms
	Slide 15: Protection Model (I)
	Slide 16: Protection Model (II)
	Slide 17: Spin
	Slide 18: Spin Mechanisms for Events
	Slide 19: Event example
	Slide 20: Default Core services in SPIN
	Slide 21: CPU Scheduling
	Slide 22: Experiments
	Slide 23: Conclusions

