
CS 202 Advanced

Operating Systems

Virtual Memory (cont’d)

Elephant(s) in the room

• Problem 1: Translation is slow!

• Many memory accesses for each memory access

• Caches are useless!

• Problem 2: Page

table can be

gigantic!

• We need one for

each process

• All your memory

belongs to us!

Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1

like any other memory word

PTEs may be evicted by other data references

PTE hit still requires a small L1 delay

Solution: Translation Lookaside Buffer (TLB)

Small hardware cache in MMU

Maps virtual page numbers to physical page

numbers

Contains complete page table entries for small

number of pages

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Reloading the TLB

If the TLB does not have mapping, two possibilities:

1. MMU loads PTE from page table in memory

Hardware managed TLB, OS not involved in this step

OS has already set up the page tables so that the hardware can

access it directly

2. Trap to the OS

Software managed TLB, OS intervenes at this point

OS does lookup in page table, loads PTE into TLB

OS returns from exception, TLB continues

A machine will only support one method or the other

At this point, there is a PTE for the address in the TLB

Page Faults

PTE can indicate a protection fault

Read/write/execute – operation not permitted on page

Invalid – virtual page not allocated, or page not in

physical memory

TLB traps to the OS (software takes over)

R/W/E – OS usually will send fault back up to process,

or might be playing games (e.g., copy on write,

mapped files)

Invalid

Virtual page not allocated in address space

OS sends fault to process (e.g., segmentation fault)

Page not in physical memory

OS allocates frame, reads from disk, maps PTE to physical frame

Multi-Level Page Tables

Suppose:

4KB (212) page size, 48-bit address space, 8-byte PTE

Problem:

Would need a 512 GB page table!

248 * 2-12 * 23 = 239 bytes

Common solution:

Multi-level page tables

Example: 2-level page table

Level 1 table: each PTE points to a page table (always memory

resident)

Level 2 table: each PTE points to a page

(paged in and out like any other data)

Level 1

Table

...

Level 2

Tables

...

A Two-Level Page Table Hierarchy

...

Page Replacement

Mapped Files

Mapped files enable processes to do file I/O using loads

and stores

Instead of “open, read into buffer, operate on buffer, …”

Bind a file to a virtual memory region (mmap() in Unix)

PTEs map virtual addresses to physical frames holding file data

Virtual address base + N refers to offset N in file

Initially, all pages mapped to file are invalid

OS reads a page from file when invalid page is accessed

OS writes a page to file when evicted, or region unmapped

If page is not dirty (has not been written to), no write needed

Another use of the dirty bit in PTE

Demand Paging (OS)

We use demand paging (similar to other

caches):

Pages loaded from disk when referenced

Pages may be evicted to disk when memory is full

Page faults trigger paging operations

What is the alternative to demand paging?

Some kind of prefetching

Lazy vs. aggressive policies in systems

Demand Paging (Process)

Demand paging when a process first starts up

When a process is created, it has

A brand-new page table with all valid bits off

No pages in memory

When the process starts executing

Instructions fault on code and data pages

Faulting stops when all necessary code and data pages are in

memory

Only code and data needed by a process needs to be loaded

This, of course, changes over time…

Page replacement policy

What we discussed so far (page faults, swap,

page table structures, etc…) is mechanisms

Page replacement policy: determine which

page to remove when we need a victim

Does it matter?

Yes! Page faults are super expensive

Getting the number down, can improve the

performance of the system significantly

Evicting the Best Page

Goal is to reduce the page fault rate

The best page to evict is the one never touched again

Will never fault on it

Never is a long time, so picking the page closest to

“never” is the next best thing

Evicting the page that won’t be used for the longest period

minimizes the number of page faults

Proved by Belady

We’re now going to survey various replacement

algorithms, starting with Belady’s

Belady’s Algorithm

Belady’s algorithm

Idea: Replace the page that will not be used for the longest time

in the future

Optimal? How would you show?

Problem: Have to predict the future

Why is Belady’s useful then?

Use it as a yardstick/upper bound

Compare implementations of page replacement algorithms with

the optimal to gauge room for improvement

If optimal is not much better, then algorithm is pretty good

What’s a good lower bound?

Random replacement is often the lower bound

First-In First-Out (FIFO)

FIFO is an obvious algorithm and simple to implement

Maintain a list of pages in order in which they were paged in

On replacement, evict the one brought in longest time ago

Why might this be good?

Maybe the one brought in the longest ago is not being used

Why might this be bad?

Then again, maybe it’s not

We don’t have any info to say one way or the other

FIFO suffers from “Belady’s Anomaly”

The fault rate might actually increase when the algorithm is given

more memory (very bad)

Least Recently Used (LRU)

LRU uses reference information to make a more

informed replacement decision

Idea: We can’t predict the future, but we can make a

guess based upon past experience

On replacement, evict the page that has not been

used for the longest time in the past (Belady’s: future)

When does LRU do well? When does LRU do

poorly?

Implementation

To be perfect, need to time stamp every reference (or

maintain a stack) – much too costly

So we need to approximate it

Approximating LRU

LRU approximations use the PTE reference bit

Keep a counter for each page

At regular intervals, for every page do:

If ref bit = 0, increment counter

If ref bit = 1, zero the counter

Zero the reference bit

The counter will contain the number of intervals since

the last reference to the page

The page with the largest counter is the least recently

used

Some architectures don’t have a reference bit

Can simulate reference bit using the valid bit to induce

faults

LRU Clock (Not Recently Used)

Not Recently Used (NRU) – Used by Unix
Replace page that is “old enough”

Arrange all of physical page frames in a big circle (clock)

A clock hand is used to select a good LRU candidate

Sweep through the pages in circular order like a clock

If the ref bit is off, it hasn’t been used recently

What is the minimum “age” if ref bit is off?

If the ref bit is on, turn it off and go to next page

Arm moves quickly when pages are needed

Low overhead when plenty of memory

If memory is large, “accuracy” of information degrades

What does it degrade to?

One fix: use two hands (leading erase hand, trailing select hand)

LRU Clock

P1: 1

P2: 1

P3: 1

P8: 0

P7: 0

P6: 0

P5: 1

P4: 0

P1: 0

P2: 0

P3: 0

P8: 1

P7: 0

P6: 0

P5: 1

P4: 0

Example: gcc Page Replace

Example: Belady’s Anomaly

Fixed vs. Variable Space

In a multiprogramming system, we need a way
to allocate memory to competing processes

Problem: How to determine how much memory
to give to each process?

Fixed space algorithms
Each process is given a limit of pages it can use

When it reaches the limit, it replaces from its own pages

Local replacement

Some processes may do well while others suffer

Variable space algorithms
Process’ set of pages grows and shrinks dynamically

Global replacement

One process can ruin it for the rest

Working Set Model

A working set of a process is used to model

the dynamic locality of its memory usage

Defined by Peter Denning in 60s

Definition

WS(t,w) = {set of pages P, such that every page in

P was referenced in the time interval (t, t-w)}

t – time, w – working set window (measured in

page refs)

A page is in the working set (WS) only if it

was referenced in the last w references

Working Set Size

The working set size is the number of pages in the

working set

The number of pages referenced in the interval (t, t-w)

The working set size changes with program locality

During periods of poor locality, you reference more pages

Within that period, the working set size is larger

Intuitively, want the working set to be the set of pages a

process needs in memory to prevent heavy faulting

Each process has a parameter w that determines a working set

with few faults

Denning: Don’t run a process unless working set is in memory

Example: gcc Working Set

Working Set Problems

Problems

How do we determine w?

How do we know when the working set changes?

Too hard to answer

So, working set is not used in practice as a page

replacement algorithm

However, it is still used as an abstraction

The intuition is still valid

When people ask, “How much memory does

Firefox need?”, they are in effect asking for the

size of Firefox’s working set

Thrashing

Page replacement algorithms avoid thrashing

When most of the time is spent by the OS in paging

data back and forth from disk

No time spent doing useful work (making progress)

In this situation, the system is overcommitted

No idea which pages should be in memory to reduce faults

Could just be that there isn’t enough physical memory for all of

the processes in the system

Ex: Running Windows95 with 4 MB of memory…

Possible solutions

Swapping – write out all pages of a process

Buy more memory

Summary

Page replacement algorithms

Belady’s – optimal replacement (minimum # of faults)

FIFO – replace page loaded furthest in past

LRU – replace page referenced furthest in past

Approximate using PTE reference bit

LRU Clock – replace page that is “old enough”

Working Set – keep the set of pages in memory that has minimal

fault rate (the “working set”)

Page Fault Frequency – grow/shrink page set as a function of

fault rate

Multiprogramming

Should a process replace its own page, or that of another?

	Slide 1: CS 202 Advanced Operating Systems
	Slide 2: Elephant(s) in the room
	Slide 3: Speeding up Translation with a TLB
	Slide 4: TLB Hit
	Slide 5: TLB Miss
	Slide 6: Reloading the TLB
	Slide 7: Page Faults
	Slide 8: Multi-Level Page Tables
	Slide 9: A Two-Level Page Table Hierarchy
	Slide 10: Page Replacement
	Slide 11: Mapped Files
	Slide 12: Demand Paging (OS)
	Slide 13: Demand Paging (Process)
	Slide 14: Page replacement policy
	Slide 15: Evicting the Best Page
	Slide 16: Belady’s Algorithm
	Slide 17: First-In First-Out (FIFO)
	Slide 18: Least Recently Used (LRU)
	Slide 19: Approximating LRU
	Slide 20: LRU Clock (Not Recently Used)
	Slide 21: LRU Clock
	Slide 22: Example: gcc Page Replace
	Slide 23: Example: Belady’s Anomaly
	Slide 24: Fixed vs. Variable Space
	Slide 25: Working Set Model
	Slide 26: Working Set Size
	Slide 27: Example: gcc Working Set
	Slide 28: Working Set Problems
	Slide 29: Thrashing
	Slide 30: Summary

