
CS 202: Advanced Operating

Systems

Distributed Filesystems

Credit: Uses some slides by Jehan-Francois
Paris, Mark Claypool and Jeff Chase

DESIGN AND IMPLEMENTATION

OF THE SUN NETWORK

FILESYSTEM

R. Sandberg, D. Goldberg

S. Kleinman, D. Walsh, R. Lyon

Sun Microsystems

What is NFS?

First commercially successful network file system:

Developed by Sun Microsystems for their diskless workstations

Designed for robustness and “adequate performance”

Sun published all protocol specifications

Many many implementations

Overview and Objectives

Fast and efficient crash recovery

Why do crashes occur?

To accomplish this:

NFS is stateless – key design decision

All client requests must be self-contained

The virtual filesystem interface

VFS operations

VNODE operations

Additional objectives

Machine and Operating System Independence

Could be implemented on low-end machines of the mid-80’s

Transparent Access

Remote files should be accessed in exactly the same way as

local files

UNIX semantics should be maintained on client

Best way to achieve transparent access

“Reasonable” performance

Robustness and preservation of UNIX semantics were much

more important

Example

What if the client simply passes the open request to the server?

Server has state

Crash causes big problems

Three important parts

The protocol

The server side

The client side

The protocol (I)

Uses the Sun RPC mechanism and Sun eXternal

Data Representation (XDR) standard

Defined as a set of remote procedures

Protocol is stateless
Each procedure call contains all the information necessary to

complete the call

Server maintains no “between call” information

Advantages of statelessness

Crash recovery is very easy:
When a server crashes, client just resends request until
it gets an answer from the rebooted server

Client cannot tell difference between a server that has
crashed and recovered and a slow server

Client can always repeat any request

NFS as a “Stateless” Service

A classical NFS server maintains no in-memory

hard state.
The only hard state is the stable file system image on disk.

no record of clients or open files

no implicit arguments to requests

E.g., no server-maintained file offsets: read and write requests

must explicitly transmit the byte offset for each operation.

no write-back caching on the server

no record of recently processed requests

etc., etc....

Statelessness makes failure recovery simple

and efficient.

Consequences of statelessness

Read and writes must specify their start offset

Server does not keep track of current position in

the file

User still use conventional UNIX reads and writes

Open system call translates into several

lookup calls to server

No NFS equivalent to UNIX close system call

Important pieces of protocol

From protocol to distributed file system

Client side translates user requests to protocol

messages to implement the request remotely

Example:

The lookup call (I)

Returns a file handle instead of a file descriptor
File handle specifies unique location of file

Volume identifier, inode number and generation number

lookup(dirfh, name) returns (fh, attr)
Returns file handle fh and attributes of named file in directory

dirfh

Fails if client has no right to access directory dirfh

The lookup call (II)

One single open call such as

fd = open(“/usr/joe/6360/list.txt”)

will be result in several calls to lookup

lookup(rootfh, “usr”) returns (fh0, attr)

lookup(fh0, “joe”) returns (fh1, attr)

lookup(fh1, “6360”) returns (fh2, attr)

lookup(fh2, “list.txt”) returns (fh, attr)

Why all these steps?

Any of components of /usr/joe/6360/list.txt

could be a mount point

Mount points are client dependent and mount information is kept above the

lookup() level

Server side (I)

Server implements a write-through policy

Required by statelessness

Any blocks modified by a write request (including

i-nodes and indirect blocks) must be written back

to disk before the call completes

Server side (II)

File handle consists of

Filesystem id identifying disk partition

I-node number identifying file within partition

Generation number changed every time

i-node is reused to store a new file

Server will store

Filesystem id in filesystem superblock

I-node generation number in i-node

Client side (I)

Provides transparent interface to NFS

Mapping between remote file names and remote file

addresses is done a server boot time through remote

mount

Extension of UNIX mounts

Specified in a mount table

Makes a remote subtree appear part of a local subtree

Remote mount

Client tree

bin

usr

/
Server subtree

rmount

After rmount, root of server subtree

can be accessed as /usr

Client side (II)

Provides transparent access to

NFS

Other file systems (including UNIX FFS)

New virtual filesystem interface supports

VFS calls, which operate on whole file system

VNODE calls, which operate on individual files

Treats all files in the same fashion

Client side (III)

UNIX system calls

VNODE/VFS

Other FS NFS UNIX FS

User interface is
unchanged

RPC/XDR disk

LAN

Common interface

More examples

Continued

Handling server Failures

Failure types:

Idempotency

A client handles all these failures by simply

retrying the request

Why can this approach work? These

operations are idempotent:

performing an operation multiple times is

equivalent to performing it one time

Lookup, read, write are obviously idempotent

What about delete, mkdir, exclusive create,

append-mode write?

24

Client-side Caching

Can greatly improve the performance

But what about cache consistency?

Solution:

flush-on-close (a.k.a, close-to-open)

GETATTR (with an attribute cache)

What do we sacrifice?

25

Discussion

Throughput

Latency

Scalability

Crash Recovery

Fault Tolerance

26

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: DESIGN AND IMPLEMENTATION OF THE SUN NETWORK FILESYSTEM
	Slide 3: What is NFS?
	Slide 4: Overview and Objectives
	Slide 5: Additional objectives
	Slide 6: Example
	Slide 7: The protocol (I)
	Slide 8: Advantages of statelessness
	Slide 9: NFS as a “Stateless” Service
	Slide 10: Consequences of statelessness
	Slide 11: Important pieces of protocol
	Slide 12: From protocol to distributed file system
	Slide 13: The lookup call (I)
	Slide 14: The lookup call (II)
	Slide 15: Server side (I)
	Slide 16: Server side (II)
	Slide 17: Client side (I)
	Slide 18: Remote mount
	Slide 19: Client side (II)
	Slide 20: Client side (III)
	Slide 21: More examples
	Slide 22: Continued
	Slide 23: Handling server Failures
	Slide 24: Idempotency
	Slide 25: Client-side Caching
	Slide 26: Discussion

