
CS 202: Advanced Operating

Systems

Log-Structured File System

Log-Structured/Journaling File

System

Radically different file system design

Technology motivations:
CPUs outpacing disks: I/O becoming more-and-more of a
bottleneck

Large RAM: file caches work well, making most disk traffic writes

Problems with (then) current file systems:
Lots of little writes

Synchronous: wait for disk in too many places – makes it hard to
win much from RAIDs, too little concurrency

5 seeks to create a new file: (rough order)
1. file i-node (create)

2. file data

3. directory entry

4. file i-node (finalize)

5. directory i-node (modification time)

6. (not to mention bitmap updates)

LFS Basic Idea

Log all data and metadata with efficient, large, sequential writes

Do not update blocks in place – just write new versions in the log

Treat the log as the truth, but keep an index on its contents

Not necessarily good for reads, but trends help

Rely on a large memory to provide fast access through caching

Data layout on disk has “temporal locality” (good for writing), rather

than “logical locality” (good for reading)

Why is this a better? Because caching helps reads but not writes!

Basic idea

We buffer all updates, and write them together in one

big sequential write

Good for the disk

Example above, writes to two different files were written

together (along with the new version of i-node) in one write

How much should we buffer?

What happens if too much? If too little?

But how do we find a file??

All problems in CS solved with another level of indirection ☺

Devil is in the details

Two potential problems:

Log retrieval on cache misses – how do we find

the data?

Wrap-around: what happens when end of disk is

reached?

No longer any big, empty runs available

How to prevent fragmentation?

LFS vs. UFS

6

file1 file2

dir1 dir2

Unix File

System

file1 file2

dir1 dir2

Log-Structured

File System

Log

inode

directory

data

inode map

Blocks written to

create two 1-block

files: dir1/file1 and

dir2/file2, in UFS and

LFS

i-node map

A map keeping track of the location of i-nodes

Anytime an i-node is written to disk, the imap is

updated

But is that any better? In a second

Most of the time the imap is in memory, so access is

fast

Updated imap is saved as part of the log!

 but how do we find it!

Final piece to the solution

Checkpoint region is written to point to the location of the
imap

Also serves as an indicator of a stable point in the file system
for crash recovery

So, to read a file from LFS:

Read the CR, use it to read and cache the imap

After that, it is identical to FFS

Are reads fast?

What about directories?

When a file is updated, its inode changes (new copy)

We need to update the directory inode (also creating a copy)

We need to update its parent directory

Ugh….what to do?

Inode map helps with that too – just keep track of inode number

and resolve it through inode map

LFS Disk Wrap-Around/Garbage collection

Compact live info to open up large runs of free space

Problem: long-lived information gets copied over-and-over

Thread log through free spaces

Problem: disk fragments, causing I/O to become inefficient again

Solution: segmented log

Divide disk into large, fixed-size segments

Do compaction within a segment; thread between segments

When writing, use only clean segments (i.e. no live data)

Occasionally clean segments: read in several, write out live data in compacted form, leaving

some fragments free

Try to collect long-lived info into segments that never need to be cleaned

Note there is not free list or bit map (as in FFS), only a list of clean segments

LFS Segment Cleaning

Which segments to clean?
Keep estimate of free space in each segment to help find segments with
lowest utilization

Always start by looking for segment with utilization=0, since those are
trivial to clean…

If utilization of segments being cleaned is U:
write cost = (total bytes read & written)/(new data written) = 2/(1-U) (unless
U is 0)

write cost increases as U increases: U = .9 => cost = 20!

Need a cost of less than 4 to 10; => U of less than .75 to .45

How to clean a segment?
Segment summary block contains map of the segment

Must list every i-node and file block

For file blocks you need {i-number, block #}

Through i-map you check if this block is still being used for the (i-
number, block #)

Evaluation Results

12

Is this a good paper?

What were the authors’ goals?

What about the evaluation/metrics?

Did they convince you that this was a good

system/approach?

Does the system/approach meet the “Test of

Time” challenge?

How would you review this paper today?

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: Log-Structured/Journaling File System
	Slide 3: LFS Basic Idea
	Slide 4: Basic idea
	Slide 5: Devil is in the details
	Slide 6: LFS vs. UFS
	Slide 7: i-node map
	Slide 8: Final piece to the solution
	Slide 9: What about directories?
	Slide 10: LFS Disk Wrap-Around/Garbage collection
	Slide 11: LFS Segment Cleaning
	Slide 12: Evaluation Results
	Slide 13: Is this a good paper?

