
CS 202: Advanced Operating

Systems

Scheduler Activations

1

Adopted some slides from www.cs.pdx.edu/~walpole/class/cs533/winter2007/slides/92.ppt

Managing Concurrency Using Threads

User-level library

Management in application’s address space

High performance and very flexible

Lack functionality

Operating system kernel

Poor performance (when compared to user-level threads)

Poor flexibility

High functionality

New system: kernel interface combined with user-level

thread package

Same functionality as kernel threads

Performance and flexibility of user-level threads

User-level Threads

Thread management routines linked into application

No kernel intervention == high performance

Supports customized scheduling algorithms == flexible

(Virtual) processor blocked during system services == lack of

functionality

I/O, page faults, and multiprogramming cause entire process to block

User

space

Kernel

space

Process table

Process

(“virtual processor”)

Thread

Runtime system Thread table

Kernel-level Threads

No system integration problems (system calls can be blocking calls)
== high functionality

Extra kernel trap and copy and check of all parameters on all thread
operations == poor performance

Kernel schedules thread from same or other address space
(process)

Single, general purpose scheduling algorithm == lack of flexibility

User

space

Kernel

space

Process table

Process

Thread

Thread table

Kernel Threads Supporting User-level

Threads

Question: Can we accomplish system integration by

implementing user-level threads on top of kernel threads?

Typically one kernel thread per processor (virtual processor)

What about multiple user-level threads run on top of one

kernel-level thread?

Answer: No

Goals (from paper)

Functionality
No processor idles when there are ready threads

No priority inversion (high priority thread waiting for low priority one)

when its ready

When a thread blocks, the processor can be used by another thread

Performance
Closer to user threads than kernel threads

Flexibility
Allow application-level customization or even a completely different
concurrency model

6

Problems

User thread does a blocking call?

Application loses a processor!

Scheduling decisions at user and kernel not

coordinated

Kernel may de-schedule a thread at a bad time
(e.g., while holding a lock)

Application may need more or less computing

Solution?

Allow coordination between user and kernel
schedulers

7

Scheduler activations

Allow user level threads to act like kernel

level threads/virtual processors

Notify user level scheduler of relevant kernel

events

Like what?

Provide space in kernel to save context of

user thread when kernel stops it

E.g., for I/O or to run another application

8

Kernel upcalls

New processor available
Reaction? Run time picks user thread to use it

Activation blocked (e.g., for page fault)

Reaction? Runtime runs a different thread on the
activation

Activation unblocked

Activation now has two contexts

Running activation is preempted – why?

Activation lost processor

Context remapped to another activation

What do these accomplish?

9

Runtime->Kernel

Informs kernel when it needs more

resources, or when it is giving up some

Could involve the kernel to preempt low

priority threads

Only kernel can preempt

Almost everything else is user level!

Performance of user-level, with the advantages of

kernel threads!

10

Virtual Multiprocessor

Application knows how many and which processors

allocated to it by kernel.

Application has complete control over which threads are

running on processors.

Kernel notifies thread scheduler of events affecting

address space.

Thread scheduler notifies kernel regarding processor

allocation.

User

space

Kernel space

(“virtual multiprocessor”)

Scheduler Activations

Vessels for running user-level threads

One scheduler activation per processor assigned to
address space.

Also created by kernel to perform upcall into
application’s address space

“Scheduler activation has blocked”

“Scheduler activation has unblocked”

“Add this processor”

“Processor has been preempted”

Result: Scheduling decisions made at user-level and
application is free to build any concurrency model on top
of scheduler activations.

Scheduler activations (2)

Preemptions in critical sections

Runtime checks during upcall whether

preempted user thread was running in a

critical section

Continues the user thread using a user level

context switch in this case

Once lock is released, it switches back to original

thread

Keep track of critical sections using a hash table of
section begin/end addresses

14

Implementation

• Scheduler activations added to Topaz kernel thread management.

• Performs upcalls instead of own scheduling.

• Explicit processor allocation to address spaces.

• Modifications to FastThreads user-level thread package

• Processing of upcalls.

• Resume interrupted critical sections.

• Pass processor allocation information to Topaz.

Performance

•Thread performance without kernel involvement similar to FastThreads

before changes.

•Upcall performance significantly worse than Topaz threads.

–Untuned implementation.

–Topaz in assembler, this system in Modula-2+.

•Application performance

–Negligible I/O: As quick as original FastThreads.

–With I/O: Performs better than either FastThreads or Topaz threads.

Application Performance (negligible I/O)

Application Performance (with I/O)

Discussion

Summary:

Get user level thread performance but with

scheduling abilities of kernel level threads

Main idea: coordinating user level and kernel level
scheduling through scheduler activations

Limitations

Upcall performance (5x slowdown)

Performance analysis limited

Connections to exo-kernel/spin/microkernels?

19

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: Managing Concurrency Using Threads
	Slide 3: User-level Threads
	Slide 4: Kernel-level Threads
	Slide 5: Kernel Threads Supporting User-level Threads
	Slide 6: Goals (from paper)
	Slide 7: Problems
	Slide 8: Scheduler activations
	Slide 9: Kernel upcalls
	Slide 10: Runtime->Kernel
	Slide 11: Virtual Multiprocessor
	Slide 12: Scheduler Activations
	Slide 13: Scheduler activations (2)
	Slide 14: Preemptions in critical sections
	Slide 15: Implementation
	Slide 16: Performance
	Slide 17: Application Performance (negligible I/O)
	Slide 18: Application Performance (with I/O)
	Slide 19: Discussion

