
So, lets try our hand
at some
synchronization

1

What is synchronization?
Making sure that concurrent activities don’t
access shared data in inconsistent ways

int i = 0; // shared
Thread A Thread B

i=i+1; i=i-1;
What is in i?

2

What are the sources of concurrency?
Multiple user-space processes

On multiple CPUs
Device interrupts
Workqueues
Tasklets
Timers

3

Pitfalls in scull
Race condition: result of uncontrolled access
to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}

Scull is the Simple Character Utility for Locality Loading (an example device driver from
the Linux Device Driver book)

Pitfalls in scull
Race condition: result of uncontrolled access
to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}

Pitfalls in scull
Race condition: result of uncontrolled access
to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}

Pitfalls in scull
Race condition: result of uncontrolled access
to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}
Memory leak

Synchronization primitives
Lock/Mutex

To protect a shared variable, surround it with a
lock (critical region)
Only one thread can get the lock at a time
Provides mutual exclusion

Shared locks
More than one thread allowed (hmm…)

Others? Yes, including Barriers (discussed in
the paper)

8

Synchronization primitives (cont’d)
Lock based

Blocking (e.g., semaphores, futexes, completions)
Non-blocking (e.g., spin-lock, …)

Sometimes we have to use spinlocks

Lock free (or partially lock free J)
Atomic instructions
seqLocks
RCU
Transactions

9

How about locks?
Lock(L): Unlock(L):
If(L==0) L=0;

L=1;
else

while(L==1);
//wait
go back;

10

Can we do this just with atomic reads and writes?

Check and lock are not atomic!

Yes but not easy—Decker’s algorithm
Easier to use read-modify-update atomic instructions

Naïve implementation of spinlock
Lock(L):
While(test_and_set(L));
//we have the lock!
//eat, dance and be merry

Unlock(L)
L=0;

11

Why naïve?
Works? Yes, but not used in practice
Contention

Think about the cache coherence protocol
Set in test and set is a write operation

Has to go to memory
A lot of cache coherence traffic
Unnecessary unless the lock has been released
Imagine if many threads are waiting to get the lock

Fairness/starvation

12

Better implementation: Spin on read
Assumption: We have cache coherence

Not all are: e.g., Intel SCC
Lock(L):
while(L==locked); //wait
if(test_and_set(L)==locked) go back;

Still a lot of chattering when there is an unlock
Spin lock with backoff

13

Bakery Algorithm

struct lock {
int next_ticket;
int now_serving; }

Acquire_lock:
int my_ticket = fetch_and_inc(L->next_ticket);
while(L->new_serving!=my_ticket); //wait
//Eat, Dance and me merry!

Release_lock:
L->now_serving++;

Comments? Fairness? Efficiency/cache coherence?

14

Still too much chatter

Anderson Lock (Array lock)
Problem with bakery algorithm:

All threads listening to next_serving
A lot of cache coherence chatter

But only one will actually acquire the lock
Can we have each thread wait on a different
variable to reduce chatter?

15

Anderson’s Lock
We have an array (actually circular queue) of variables

Each variable can indicate either lock available or waiting for lock
Only one location has lock available

Lock(L):
my_place = fetch_and_inc (queuelast);
while (flags[myplace mod N] == must_wait);

Unlock(L)
flags[myplace mod N] = must_wait;
flags[mypalce+1 mod N] = available;

16

Fair and not noisy – compare to spin-on-read and bakery algorithm
Any negative side effects?

Concurrency and
Memory Consistency
References:
• Shared Memory Consistency Models: A Tutorial, Sarita V. Adve & Kourosh Gharachorloo,

September 1995
• A primer on memory consistency and cache coherence, Sorin, Hill and wood, 2011 (chapters 3 and

4)
• Memory Models: A Case for Rethinking Parallel Languages and Hardware, Adve and Boehm,

2010

17

Memory Consistency
Formal specification of memory semantics

Guarantees as to how shared memory will
behave on systems with multiple processors

Ordering of reads and writes

Essential for programmer (OS writer!) to
understand

18

Why Bother?
Memory consistency models affect everything

Programmability
Performance
Portability

Model must be defined at all levels
Programmers and system designers care

19

Uniprocessor Systems
Memory operations occur:

One at a time
In program order

Read returns value of last write
Only matters if location is the same or dependent
Many possible optimizations

Intuitive!

20

How does a core reorder? (1)
Store-store reordering:

Non-FIFO write buffer
Load-load or load-store/store-load reordering:

Out of order execution

Should the hardware prevent any of this
behavior?

21

Multiprocessor: Example

22

Cont’d

S2 and S1 reordered
Why? How?

23

Example 2

24

Sequential Consistency
The result of any
execution is the same
as if all operations
were executed on a
single processor
Operations on each
processor occur in the
sequence specified by
the executing program

25

P1 P2 P3 Pn…

Memory

One execution sequence

26

27

S.C. Disadvantages

Difficult to implement!

Huge lost potential for optimizations
Hardware (cache) and software (compiler)
Be conservative: err on the safe side
Major performance hit

28

Relaxed Consistency

Program Order relaxations (different locations)

W à R; W à W; R à R/W
Write Atomicity relaxations

Read returns another processor’s Write early
Combined relaxations

Read your own Write (okay for S.C.)
Safety Net – available synchronization
operations
Note: assume one thread per core

29

Synchronization is broken!
How can we solve this problem?

Answer: Memory Barrier/Fence
A special complier or CPU instruction that
enforces an ordering constraint
Compiler: asm volatile ("" ::: "memory");
CPU: mfence/lfence

