S0, lets try our hand
at some
synchronization

R

What is synchronization?

» Making sure that concurrent activities don't
access shared data in inconsistent ways

> Int1=0:// shared
Thread A Thread B
i=i+1; i=i-1;
What is in i?

What are the sources of concurrency? !/CR

> Multiple user-space processes
On multiple CPUs

» Device interrupts
> Workqueues

> Tasklets

> Timers

Pitfalls in scull R

» Race condition: result of uncontrolled access
to shared data

if ('dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL) ;
if (!'dptr->data[s_pos]) {
goto out;
}
}

Scull is the Simple Character Utility for Locality Loading (an example device driver from
the Linux Device Driver book)

Pitfalls in scull R

» Race condition: result of uncontrolled access
to shared data

—Fif (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL) ;
if (!'dptr->data[s_pos]) {
goto out;
}
}

Pitfalls in scull R

» Race condition: result of uncontrolled access
to shared data

—>if (!dptr->data[s pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL) ;
if (!'dptr->data[s_pos]) {
goto out;
}
}

Pitfalls in scull R

» Race condition: result of uncontrolled access
to shared data

if ('dptr->data[s_pos]) {
—F dptr->data[s pos] = kmalloc(quantum, GFP_KERNEL) ;
if (!'dptr->data[s_pos]) {
goto out;
}

} Memory leak

Synchronization primitives R

» Lock/Mutex

To protect a shared variable, surround it with a
lock (critical region)

Only one thread can get the lock at a time
Provides mutual exclusion

> Shared locks
More than one thread allowed (hmm...)

» Others? Yes, including Barriers (discussed in
the paper)

Synchronization primitives (cont’d)/CK

» Lock based
Blocking (e.g., semaphores, futexes, completions)
Non-blocking (e.g., spin-lock, ...)
Sometimes we have to use spinlocks
> Lock free (or partially lock free ©)
Atomic instructions
seglLocks
RCU
Transactions

How about locks?
> Lock(L): Unlock(L):

Check and lock are not atomic!

Can we do this just with atomic reads and writes?

Yes but not easy—Decker’s algorithm
Easier to use read-modify-update atomic instructions

10

R

Naive implementation of spinlock 'K
> Lock(L):

> Unlock(L)

Why naive? K

> Works? Yes, but not used in practice

» Contention
Think about the cache coherence protocol

Set in test and set is a write operation
Has to go to memory
A lot of cache coherence traffic
Unnecessary unless the lock has been released
Imagine if many threads are waiting to get the lock

» Fairness/starvation

12

Better implementation: Spin on read K

> Assumption: We have cache coherence
Not all are: e.qg., Intel SCC

» Still a lot of chattering when there is an unlock
Spin lock with backoff

13

Bakery Algorithm R

> Acquire_lock:

Still too much chatter

» Release lock:

Comments? Fairness? Efficiency/cache coherence?

14

Anderson Lock (Array lock)

> Problem with bakery algorithm:

All threads listening to next_serving
A lot of cache coherence chatter
But only one will actually acquire the lock

Can we have each thread wait on a different
variable to reduce chatter?

15

R

Anderson’s Lock R

> We have an array (actually circular queue) of variables

Each variable can indicate either lock available or waiting for lock
Only one location has lock available

Fair and not noisy — compare to spin-on-read and bakery algorithm
Any negative side effects? 16

I% UNIVERSITY OF CALIFORNIA

Concurrency and
Memory Consistency

References:

Shared Memory Consistency Models: A Tutorial, Sarita V. Adve & Kourosh Gharachorloo,
September 1995

A primer on memory consistency and cache coherence, Sorin, Hill and wood, 2011 (chapters 3 and
4)

Memory Models: A Case for Rethinking Parallel Languages and Hardware, Adve and Boehm,
2010

17

Memory Consistency

» Formal specification of memory semantics

» Guarantees as to how shared memory will
behave on systems with multiple processors

» Ordering of reads and writes

» Essential for programmer (OS writer!) to
understand

18

R

Why Bother? R

> Memory consistency models affect everything

Programmability
Performance
Portability

> Model must be defined at all levels
» Programmers and system designers care

19

Uniprocessor Systems

> Memory operations occur:
One at a time
In program order
» Read returns value of last write

Only matters if location is the same or dependent
Many possible optimizations

> Intuitive!

20

R

How does a core reorder? (1) K

> Store-store reordering:
Non-FIFO write buffer

» Load-load or load-store/store-load reordering:
Out of order execution

» Should the hardware prevent any of this
behavior?

21

Multiprocessor: Example

TABLE 3.1: Should r2 Always be Set to NEW?

Core C1

Core C2

Comments

S1: Store data = NEW;
S2: Store flag = SET;

L1: Load rl = flag;
B1:if (r1 # SET) goto L1;
L2: Load r2 = data;

/* Initially, data = 0 & flag # SET */
/* L1 & Bl may repeat many times */

22

Cont'd

TABLE 3.2: One Possible Execution of Program in Table 3.1.
cycle Core C1 Core C2 Coherence state of data | Coherence state of flag
1 S2: Store flag=SET read-only for C2 read-write for C1
2 L1: Load r1=flag read-only for C2 read-only for C2
3 L2: Load r2=data read-only for C2 read-only for C2
4 S1: Store data=NEW read-write for C1 read-only for C2

» S2 and S1 reordered
Why? How?

23

Example 2

TABLE 3.3: Can Both r1 and r2 be Set to 0?

Core C1 Core C2 Comments
S1: x =NEW; S2: y=NEW; /* Initially, x =0 & y = 0*/
Ll:rl=y; L2: 12 =x;

24

Sequential Consistency

» The result of any
execution is the same
as if all operations
were executed on a
single processor

» QOperations on each
processor occur in the
sequence specified by
the executing program

S,

25

R

One execution sequence

TABLE 3.1: Should r2 Always be Set to NEW?

Core C1

Core C2

Comments

S1: Store data = NEW;
S2: Store flag = SET; L1: Load rl = flag;
B1:if (r1 # SET) goto L1;

L2: Load r2 = data;

/* Initially, data = 0 & flag # SET */
/* L1 & B1 may repeat many times */

S1: data = NEW; /* NEW */

e e e e - — — >

L1:rl =flag; /*0*/

FIGURE 3.1: A Sequentially Consistent Execution of Table 3.1’s Program.

26

program order (<p) of Core C1 memory order (<m) program order (<p) of Core C2
S1: x = NEW; /* NEW */
—————————————— >
__Lhd=yroy - $2:y = NEW; /* NEW %/
- - - — — - — — — — — — — — -
L2: 12 = x; /* NEW */
<_ ______________
Outcome: (rl, r2) = (0, NEW)
(a) SC Execution 1
S2: y =NEW; /* NEW */
-« — — — — — — — — — — — — — -
L2:r2=x;/*0%
S1: x = NEW; /* NEW */ <+ — — - — - = — = = — = — — =
—————————————— >
Ll:rl =y; /* NEW */
______________ 1 Outcome: (rl, £2) = (NEW, 0)
(b) SC Execution 2
S1: x = NEW; /* NEW */
—————————— ———— S2: y = NEW; /* NEW */
L1:rl =y; /* NEW */ e A
______________ Rl L2: 12 = x; /* NEW */
- — — — - — — — — — — — — -
v Outcome: (rl, r2) = (NEW, NEW)
(c) SC Execution 3
S2: y = NEW; /* NEW */ \
—_—_—————— = = —) —
- m2=xroy y

Outcome: (rl, r2) = (0, 0)

(d) NOT an SC Execution

27

S.C. Disadvantages R

> Difficult to implement!

> Huge lost potential for optimizations
Hardware (cache) and software (compiler)
Be conservative: err on the safe side
Major performance hit

28

Relaxed Consistency

>

>

>

>

Program Order relaxations (different iocations)
W -2 R; W -=> W, R 2> R/W

Write Atomicity relaxations

Read returns another processor’'s Write early
Combined relaxations

Read your own Write (okay for S.C.)

Safety Net — available synchronization
operations

Note: assume one thread per core

29

R

Synchronization is broken!

> How can we solve this problem?

> Answer: Memory Barrier/Fence

A special complier or CPU instruction that
enforces an ordering constraint

Compiler: asm volatile (" ::: "memory");
CPU: mfence/lfence

R

