
Scheduler Activations

1
Adopted some slides from www.cs.pdx.edu/~walpole/class/cs533/winter2007/slides/92.ppt



Managing Concurrency Using Threads
User-level library

Management in application’s address space
High performance and very flexible
Lack functionality

Operating system kernel
Poor performance (when compared to user-level threads)
Poor flexibility
High functionality

New system: kernel interface combined with user-level 
thread package

Same functionality as kernel threads
Performance and flexibility of user-level threads



User-level Threads
Thread management routines linked into application
No kernel intervention == high performance
Supports customized scheduling algorithms == flexible
(Virtual) processor blocked during system services == lack of 
functionality

I/O, page faults, and multiprogramming cause entire process to block

User 
space

Kernel 
space

Process table

Process
(“virtual processor”)

Thread

Runtime system Thread table



Kernel Threads
No system integration problems (system calls can be blocking calls) 
== high functionality
Extra kernel trap and copy and check of all parameters on all thread 
operations == poor performance
Kernel schedules thread from same or other address space 
(process)
Single, general purpose scheduling algorithm == lack of flexibility

User 
space

Kernel 
space

Process table

Process

Thread

Thread table



Kernel Threads Supporting User-level 
Threads

Question: Can we accomplish system integration by 
implementing user-level threads on top of kernel threads?
Typically one kernel thread per processor (virtual processor)
What about multiple user-level threads run on top of one 
kernel-level thread?
Answer: No



Goals (from paper)
Functionality

No processor idles when there are ready threads
No priority inversion (high priority thread waiting for low priority one) 
when its ready
When a thread blocks, the processor can be used by another thread

Performance
Closer to user threads than kernel threads

Flexibility
Allow application level customization or even a completely different 
concurrency model
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Problems
User thread does a blocking call?

Application loses a processor!
Scheduling decisions at user and kernel not 
coordinated

Kernel may de-schedule a thread at a bad time 
(e.g., while holding a lock)
Application may need more or less computing

Solution?
Allow coordination between user and kernel 
schedulers
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Scheduler activations
Allow user level threads to act like kernel 
level threads/virtual processors

Notify user level scheduler of relevant kernel 
events

Like what?

Provide space in kernel to save context of 
user thread when kernel stops it

E.g., for I/O or to run another application
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Kernel upcalls
New processor available

Reaction?  Run time picks user thread to use it
Activation blocked (e.g., for page fault)

Reaction? Runtime runs a different thread on the 
activation

Activation unblocked
Activation now has two contexts
Running activation is preempted – why?

Activation lost processor
Context remapped to another activation

What do these accomplish?
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Runtime->Kernel
Informs kernel when it needs more 
resources, or when it is giving up some
Could involve the kernel to preempt low 
priority threads

Only kernel can preempt
Almost everything else is user level!

Performance of user-level, with the advantages of 
kernel threads!
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Virtual Multiprocessor
Application knows how many and which processors 
allocated to it by kernel.
Application has complete control over which threads are 
running on processors.
Kernel notifies thread scheduler of events affecting 
address space.
Thread scheduler notifies kernel regarding processor 
allocation.

User 
space

Kernel space
(“virtual multiprocessor”)



Scheduler Activations
Vessels for running user-level threads
One scheduler activation per processor assigned to 
address space.
Also created by kernel to perform upcall into 
application’s address space

“Scheduler activation has blocked”
“Scheduler activation has unblocked”
“Add this processor”
“Processor has been preempted”

Result: Scheduling decisions made at user-level and 
application is free to build any concurrency model on top 
of scheduler activations.



Scheduler activations (2)



Preemptions in critical sections
Runtime checks during upcall whether 
preempted user thread was running in a 
critical section

Continues the user thread using a user level 
context switch in this case

Once lock is released, it switches back to original 
thread
Keep track of critical sections using a hash table of 
section begin/end addresses
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Implementation

• Scheduler activations added to Topaz kernel thread management.

• Performs upcalls instead of own scheduling.

• Explicit processor allocation to address spaces.

• Modifications to FastThreads user-level thread package

• Processing of upcalls. 

• Resume interrupted critical sections.

• Pass processor allocation information to Topaz.



Performance

•Thread performance without kernel involvement similar to FastThreads 
before changes.

•Upcall performance significantly worse than Topaz threads. 

–Untuned implementation.

–Topaz in assembler, this system in Modula-2+.

•Application performance

–Negligible I/O: As quick as original FastThreads.

–With I/O: Performs better than either FastThreads or    Topaz threads.



Application Performance (negligible I/O)



Application Performance (with I/O)



Discussion
Summary:

Get user level thread performance but with 
scheduling abilities of kernel level threads
Main idea: coordinating user level and kernel level 
scheduling through scheduler activations

Limitations
Upcall performance (5x slowdown)
Performance analysis limited

Connections to exo-kernel/spin/microkernels?
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Advanced Operating Systems
(CS 202)

Memory Consistency, Cache 
Coherence and 
Synchronization
(some cache coherence slides adapted from 
Ian Watson; some memory consistency 
slides from Sarita Adve)



Classic Example
Suppose we have to implement a function to handle 
withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

Now suppose that you and your father share a bank 
account with a balance of $1000
Then you each go to separate ATM machines and 
simultaneously withdraw $100 from the account
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Interleaved Schedules
The problem is that the execution of the two 
threads can be interleaved:

What is the balance of the account now?
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balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution 
sequence 

seen by CPU Context switch



How Interleaved Can It Get?

How contorted can the interleavings be?
We'll assume that the only atomic operations are reads 
and writes of individual memory locations

Some architectures don't even give you that!
We'll assume that a context
switch can occur at any time
We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever
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............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance = ...................................



Mutual Exclusion
Mutual exclusion to synchronize access to shared 
resources

This allows us to have larger atomic blocks
What does atomic mean?

Code that uses mutual called a critical section
Only one thread at a time can execute in the critical section
All other threads are forced to wait on entry
When a thread leaves a critical section, another can enter
Example: sharing an ATM with others

What requirements would you place on a critical section?
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Using Locks
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withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical 
Section



Using Test-And-Set

Here is our lock implementation with test-
and-set:

When will the while return?  What is the 
value of held?
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struct lock {
int held = 0;

}
void acquire (lock) {

while (test-and-set(&lock->held));
}
void release (lock) {

lock->held = 0;
}



Overview
Before we talk deeply about synchronization

Need to get an idea about the memory model in shared memory 
systems
Is synchronization only an issue in multi-processor systems?

What is a shared memory processor (SMP)?
Shared memory processors 

Two primary architectures:
Bus-based/local network shared-memory machines (small-scale)
Directory-based shared-memory machines (large-scale)
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Plan…

Introduce and discuss cache coherence
Discuss basic synchronization, up to MCS 
locks (from the paper we are reading)
Introduce memory consistency and 
implications
Is this an architecture class???

The same issues manifest in large scale 
distributed systems
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Crash course on 
cache coherence
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Bus-based Shared Memory Organization

Basic picture is simple :-
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Organization

Bus is usually simple physical connection 
(wires)
Bus bandwidth limits no. of CPUs
Could be multiple memory elements
For now, assume that each CPU has only a 
single level of cache
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Problem of Memory Coherence
Assume just single level caches and main 
memory
Processor writes to location in its cache
Other caches may hold shared copies - these 
will be out of date
Updating main memory alone is not enough
What happens if two updates happen at (nearly) 
the same time?

Can two different processors see them out of order?
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Example
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CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

X:  24

Processor 1 reads X: obtains 24 from memory and caches it
Processor 2 reads X: obtains 24 from memory and caches it
Processor 1 writes 32 to X: its locally cached copy is updated
Processor 3 reads X: what value should it get?  

Memory and processor 2 think it is 24
Processor 1 thinks it is 32

Notice that having write-through caches is not good enough

1 2 3



Cache Coherence
Try to make the system behave as if there are 
no caches!
How?  Idea: Try to make every CPU know who has a 
copy of its cached data?

too complex!

More practical:
Snoopy caches

Each CPU snoops memory bus 
Looks for read/write activity concerned with data addresses which it 
has cached.

What does it do with them?
This assumes a bus structure where all communication can be seen 
by all.

More scalable solution: ‘directory based’ coherence 
schemes
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Snooping Protocols
Write Invalidate

CPU with write operation sends invalidate 
message
Snooping caches invalidate their copy 
CPU writes to its cached copy

Write through or write back? 
Any shared read in other CPUs will now miss in 
cache and re-fetch new data.
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Snooping Protocols
Write Update

CPU with write updates its own copy
All snooping caches update their copy

Note that in both schemes, problem of 
simultaneous writes is taken care of by bus 
arbitration - only one CPU can use the bus at 
any one time.
Harder problem for arbitrary networks
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Update or Invalidate?
Which should we use?
Bus bandwidth is a precious commodity in 
shared memory multi-processors

Contention/cache interrogation can lead to 10x or 
more drop in performance
(also important to minimize false sharing)

Therefore, invalidate protocols used in most 
commercial SMPs
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Cache Coherence summary
Reads and writes are atomic

What does atomic mean?
As if there is no cache

Some magic to make things work
Have performance implications
…and therefore, have implications on 
performance of programs
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