
Advanced Operating Systems
(CS 202)

Scheduling (1)

1



Today: CPU 
Scheduling

2



The Process
The process is the OS abstraction for execution

It is the unit of execution
It is the unit of scheduling
It is the dynamic execution context of a program
A process is sometimes called a job or a task

A process is a program in execution
Programs are static entities with the potential for execution
Process is the animated/active program

Starts from the program, but also includes dynamic state

3



Process Address Space

4

Stack

0x00000000

0xBFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

Static

Dynamic



Process State Graph

5

New Ready

Running

Waiting

Terminated

Create 
Process

Process 
Exit

I/O, Page 
Fault, etc.

I/O Done

Schedule 
Process

Unschedule 
Process



Threads
Separate dual roles of a process

Resource allocation unit and execution unit
A thread defines a sequential execution stream within a process 
(PC, SP, registers)
A process defines the address space, and resources (everything 
but threads of execution)

A thread is bound to a single process
Processes, however, can have multiple threads

Threads become the unit of scheduling
Processes are now the containers in which threads execute
Processes become static, threads are the dynamic entities

6



Threads in a Process

7

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)



Today: CPU Scheduling
Scheduler runs when we context switching among 
processes/threads on the ready queue

What should it do?  Does it matter?

Making the decision on what thread to run is called 
scheduling

What are the goals of scheduling?
What are common scheduling algorithms?
Lottery scheduling
Stride Scheduling

Scheduling activations
User level vs. Kernel level scheduling of threads

8



Scheduling
Right from the start of multiprogramming, scheduling was identified 
as a big issue

CCTS and Multics developed much of the classical algorithms

Scheduling is a form of resource allocation
CPU is the resource
Resource allocation needed for other resources too; sometimes similar 
algorithms apply

Requires mechanisms and policy
Mechanisms: Context switching, Timers, process queues, process state 
information, …
Scheduling looks at the policies: i.e., when to switch and which 
process/thread to run next

9



Preemptive vs. Non-preemptive 
scheduling

In preemptive systems where we can interrupt a running job 
(involuntary context switch)

We’re interested in such schedulers…

In non-preemptive systems, the scheduler waits for a running 
job to give up CPU (voluntary context switch)

Was interesting in the days of batch multiprogramming
Some systems continue to use cooperative scheduling

Example algorithms: 
RR, FCFS, Shortest Job First (how to determine shortest), Priority 
Scheduling

10



Scheduling Goals
What are some reasonable goals for a scheduler?
Scheduling algorithms can have many different goals:

CPU utilization
Job throughput (# jobs/unit time)
Response time (Avg(Tready): avg time spent on ready queue)
Fairness (or weighted fairness)
Other?

Non-interactive applications:
Strive for job throughput, turnaround time (supercomputers)

Interactive systems
Strive to minimize response time for interactive jobs 

Mix?

11



Goals II: Avoid Resource allocation 
pathologies

Starvation no progress due to no access to resources 
E.g., a high priority process always prevents a low priority 
process from running on the CPU
One thread always beats another when acquiring a lock

Priority inversion
A low priority process running before a high priority one
Could be a real problem, especially in real time systems

Mars pathfinder: http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

Other
Deadlock, livelock, …

12



Non-preemptive approaches
Introduced just to have a baseline
FIFO: schedule the processes in order of 
arrival

Comments?

Shortest Job first
Comments?

13



Preemptive scheduling: Round Robin
Each task gets resource for a fixed period of 
time (time quantum)

If task doesn’t complete, it goes back in line
Need to pick a time quantum

What if time quantum is too long?  
Infinite?

What if time quantum is too short?  
One instruction?

14



Priority Scheduling
Priority Scheduling

Choose next job based on priority
Airline check-in for first class passengers

Can implement SJF, priority = 1/(expected CPU burst)
Also can be either preemptive or non-preemptive

Problem?
Starvation – low priority jobs can wait indefinitely

Solution 
“Age” processes

Increase priority as a function of waiting time
Decrease priority as a function of CPU consumption

15



Combining Algorithms
Scheduling algorithms can be combined

Have multiple queues
Use a different algorithm for each queue
Move processes among queues

Example: Multiple-level feedback queues (MLFQ)
Multiple queues representing different job types

Interactive, CPU-bound, batch, system, etc.

Queues have priorities, jobs on same queue scheduled RR
Jobs can move among queues based upon execution history

Feedback: Switch from interactive to CPU-bound behavior

16



Multi-level Feedback Queue (MFQ)
Goals:

Responsiveness
Low overhead
Starvation freedom
Some tasks are high/low priority
Fairness (among equal priority tasks)

Not perfect at any of them!
Used in Unix (and Windows and MacOS)

17



MFQ

Priority

1

Time Slice (ms)

time slice
expiration

new or I/O 
bound task

2

4

3

80

40

20

10

Round Robin Queues

18



Unix Scheduler
The canonical Unix scheduler uses a MLFQ

3-4 classes spanning ~170 priority levels
Timesharing: first 60 priorities
System: next 40 priorities
Real-time: next 60 priorities
Interrupt: next 10 (Solaris)

Priority scheduling across queues, RR within a queue
The process with the highest priority always runs
Processes with the same priority are scheduled RR

Processes dynamically change priority
Increases over time if process blocks before end of quantum
Decreases over time if process uses entire quantum

19



Linux scheduler
Went through several iterations
Currently CFS

Fair scheduler, like stride scheduling
Supersedes O(1) scheduler: emphasis on 
constant time scheduling regardless of overhead
CFS is O(log(N)) because of red-black tree
Is it really fair?

What to do with multi-core scheduling?

20



Problems with Traditional schedulers 
Priority systems are ad hoc: highest priority always wins
Try to support fair share by adjusting priorities with a 
feedback loop

Works over long term 
highest priority still wins all the time, but now the Unix priorities 
are always changing

Priority inversion: high-priority jobs can be blocked 
behind low-priority jobs 
Schedulers are complex and difficult to control



Lottery scheduling 
Elegant way to implement proportional share 
scheduling
Priority determined by the number of tickets 
each thread has:

Priority is the relative percentage of all of the tickets 
whose owners compete for the resource

Scheduler picks winning ticket randomly, gives 
owner the resource
Tickets can be used for a variety of resources



Example
Three threads

A has 5 tickets
B has 3 tickets
C has 2 tickets 

If all compete for the resource
B has 30% chance of being selected 

If only B and C compete
B has 60% chance of being selected 



It’s fair
Lottery scheduling is probabilistically fair
If a thread has a t tickets out of T 

Its probability of winning a lottery is  p = t/T
Its expected number of wins over  n drawings is 
np

Binomial distribution
Variance σ2 = np(1 – p)



Fairness (II)
Coefficient of variation of number of wins 
σ/np = √((1-p)/np)

Decreases with √n

Number of tries before winning the lottery 
follows a geometric distribution

As time passes, each thread ends receiving 
its share of the resource



Ticket transfers 
How to deal with dependencies?

Explicit transfers of tickets from one client to another

Transfers can be used whenever a client blocks due to 
some dependency

When a client waits for a reply from a server, it can temporarily 
transfer its tickets to the server

Server has no tickets of its own

Server priority is sum of priorities of its active clients
Can use lottery scheduling to give service to the clients

Similar to priority inheritance
Can solve priority inversion



Ticket inflation
Let users create new tickets 

Like printing their own money
Counterpart is ticket deflation
Lets mutually trusting clients adjust their priorities 
dynamically without explicit communication

Currencies: set up an exchange rate 
Enables inflation within a group
Simplifies mini-lotteries (e.g., for mutexes)



Example (I)
A process manages three threads 

A has 5 tickets
B has 3 tickets
C has 2 tickets

It creates 10 extra tickets and assigns them 
to thread C

Why?
Process now has 20 tickets



Example (II)
These 20 tickets are in a new currency 
whose exchange rate with the base currency 
is 10/20

The total value of the process’ tickets 
expressed in the base currency is still equal 
to 10



Compensation tickets (I) 
I/O-bound threads likely get less than their 
fair share of the CPU because they often 
block before their CPU quantum expires

Compensation tickets address this imbalance



Compensation tickets (II) 
A client that consumes only a fraction f of its 
CPU quantum can be granted a 
compensation ticket

Ticket inflates the value by 1/f until the client 
starts gets the CPU



Example
CPU quantum is 100 ms
Client A releases the CPU after 20ms

f = 0.2 or 1/5
Value of all tickets owned by A will be 
multiplied by 5 until A gets the CPU



Compensation tickets (III) 
Compensation tickets

Favor I/O-bound—and interactive—threads 
Helps them getting their fair share of the CPU



Implementation
On a MIPS-based DEC station running Mach 
3 microkernel

Time slice is 100ms
Fairly large as scheme does not allow preemption

Requires 
A fast RNG
A fast way to pick lottery winner



Example
Three threads

A has 5 tickets
B has 3 tickets
C has 2 tickets 

List contains
A (0-4)
B (5-7)
C (8-9)

Search time is O(n)
where n is list length



Optimization – use tree

4

A 7

B C

≤

≤

>

>
RB Tree used in Linux
Completely fair scheduler(CFS)
--not lottery based



Long-term fairness (I)



Short term fluctuations

For
2:1
ticket
alloc.
ratio



Stride scheduling
Deterministic version of lottery scheduling
Mark time virtually (counting passes)

Each process has a stride: number of passes between 
being scheduled
Stride inversely proportional to number of tickets
Regular, predictable schedule

Can also use compensation tickets
Similar to weighted fair queuing

Linux CFS is similar

39



Stride Scheduling – Basic Algorithm
Client Variables:

Tickets 
Relative resource allocation

Strides (
Interval between selection

Pass (
Virtual index of next selection

- minimum ticket allocation

40

Select Client with 
Minimum Pass

Advance Client’s 
Pass by Client’s 

Stride

Slide and example from Dong-hyeon Park  



Stride Scheduling – Basic Algorithm

41

3:2:1 Allocation
∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6
+2



Stride Scheduling – Basic Algorithm

42

3:2:1 Allocation
∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3



Stride Scheduling – Basic Algorithm

43

3:2:1 Allocation
∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3

Time 4: 6 6 6
+2



Stride Scheduling – Basic Algorithm

44

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3

Time 4: 6 6 6
+2

…
3:2:1 Allocation

∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)



Throughput Error Comparison

45

Time (quanta)

A
bs

ol
ut

e 
E

rr
or

 (q
ua

nt
a)

Error is 
independent of 
the allocation 
time in stride 
scheduling
Hierarchical stride 
scheduling has 
more balance 
distribution of 
error between 
clients. 



Accuracy of Prototype Implementation
Lottery and Stride 
Scheduler implemented 
on real-system. 

Stride scheduler stayed 
within 1% of ideal ratio. 

Low system overhead 
relative to standard Linux 
scheduler.

46

Lottery Scheduler
Stride Scheduler



Linux scheduler

Went through several iterations
Currently CFS

Fair scheduler, like stride scheduling
Supersedes O(1) scheduler: emphasis on 
constant time scheduling –why?
CFS is O(log(N)) because of red-black tree
Is it really fair?

What to do with multi-core scheduling?

47


