
OS Extensibility: Spin,
Exo-kernel and L4

Extensibility
Problem: How?
Add code to OS

how to preserve isolation?
… without killing performance?

What abstractions?
General principle: mechanisms in OS, policies
through the extensions
What mechanisms to expose?

2

Spin Approach to extensibility
Co-location of kernel and extension

Avoid border crossings
But what about protection?

Language/compiler forced protection
Strongly typed language

Protection by compiler and run-time
Cannot cheat using pointers

Logical protection domains
No longer rely on hardware address spaces to enforce
protection – no boarder crossings

Dynamic call binding for extensibility

3

ExoKernel

4

Motivation for Exokernels
Traditional centralized resource management
cannot be specialized, extended or replaced
Privileged software must be used by all
applications
Fixed high level abstractions too costly for
good efficiency
Exo-kernel as an end-to-end argument

5

Exokernel Philosophy
Expose hardware to libraryOS

Not even mechanisms are implemented
by exo-kernel

They argue that mechanism is policy

Exo-kernel worried only about
protection not resource management

6

Design Principles
Track resource ownership
Ensure protection by guarding resource
usage
Revoke access to resources
Expose hardware, allocation, names and
revocation
Basically validate binding, then let library
manage the resource

7

Exokernel Architecture

8

Separating Security from Management
Secure bindings – securely bind machine
resources
Visible revocation – allow libOSes to
participate in resource revocation
Abort protocol – break bindings of
uncooperative libOSes

9

Secure Bindings
Decouple authorization from use
Authorization performed at bind time
Protection checks are simple operations
performed by the kernel
Allows protection without understanding
Operationally – set of primitives needed for
applications to express protection checks

10

Example resource
TLB Entry

Virtual to physical mapping done by library
Binding presented to exo-kernel
Exokernel puts it in hardware TLB
Process in library OS then uses it without exo-
kernel intervention

11

Implementing Secure Bindings
Hardware mechanisms: TLB entry, Packet
Filters
Software caching: Software TLB stores
Downloaded Code: invoked on every
resource access or event to determine
ownership and kernel actions

12

Downloaded Code Example: (DPF)
Downloaded Packet Filter

Eliminates kernel crossings
Can execute when application is not
scheduled
Written in a type safe language and compiled
at runtime for security
Uses Application-specific Safe Handlers
which can initiate a message to reduce round
trip latency

13

Visible Resource Revocation
Traditionally resources revoked invisibly
Allows libOSes to guide de-allocation and
have knowledge of available resources – ie:
can choose own ‘victim page’
Places workload on the libOS to organize
resource lists

14

Abort Protocol
Forced resource revocation
Uses ‘repossession vector’
Raises a repossession exception
Possible relocation depending on state of
resource

15

Managing core services
Virtual memory:

Page fault generates an upcall to the library OS
via a registered handler
LibOS handles the allocation, then presents a
mapping to be installed into the TLB providing a
capability
Exo-kernel installs the mapping
Software TLBs

16

Managing CPU
A time vector that gets allocated to the different
library operating systems

Allows allocation of CPU time to fit the application
Revokes the CPU from the OS using an upcall

The libOS is expected to save what it needs and give
up the CPU
If not, things escalate
Can install revocation handler in exo-kernel

17

Putting it all together
Lets consider an exo-kernel with downloaded
code into the exo-kernel
When normal processing occurs, Exo-kernel
is a sleeping beauty
When a discontinuity occurs (traps, faults,
external interrupts), exokernel fields them

Passes them to the right OS (requires book-
keeping) – compare to SPIN?
Application specific handlers

18

Evaluation
Again, a full implementation
How to make sense from the quantitative
results?

Absolute numbers are typically meaningless given
that we are part of a bigger system

Trends are what matter

Again, emphasis is on space and time
Key takeawayà at least as good as a monolithic
kernel

19

Questions and conclusions
Downloaded code – security?

Some mention of SFI and little languages
SPIN is better here?

SPIN vs. Exokernel
Spin—extend mechanisms; some abstractions still exist
Exo-kernel: securely expose low-level primitives (primitive vs.
mechanism?)

Microkernel vs. exo-kernel
Much lower interfaces exported
Argue they lead to better performance
Of course, less border crossing due to downloadable code

20

On Microkernel
construction (L3/4)

21

L4 microkernel family
Successful OS with different offshoot
distributions

Commercially successful
OKLabs OKL4 shipped over 1.5 billion installations by
2012

Mostly qualcomm wireless modems
But also player in automative and airborne entertainment
systems

Used in the secure enclave processor on Apple’s A7
chips

All iOS devices have it! 100s of millions

22

Big picture overview
Conventional wisdom at the time was:

Microkernels offer nice abstractions and should be flexible
…but are inherently low performance due to high cost of border
crossings and IPC
…because they are inefficient they are inflexible

This paper refutes the performance argument
Main takeaway: its an implementation issue

Identifies reasons for low performance and shows by construction that they
are not inherent to microkernels

10-20x improvement in performance over Mach

Several insights on how microkernels should (and
shouldn’t) be built

E.g., Microkernels should not be portable

23

Paper argues for the following
Only put in anything that if moved out
prohibits functionality
Assumes:

We require security/protection
We require a page-based VM
Subsystems should be isolated from one another
Two subsystems should be able to communicate
without involving a third

24

Abstractions provided by L3
Address spaces (to support protection/separation)

Grant, Map, Flush
Handling I/O

Threads and IPC
Threads: represent the address space
End point for IPC (messages)
Interrupts are IPC messages from kernel

Microkernel turns hardware interrupts to thread events

Unique ids (to be able to identify address spaces,
threads, IPC end points etc..)

25

Debunking performance issues
What are the performance issues?
1. Switching overhead

Kernel user switches
Address space switches
Threads switches and IPC

2. Memory locality loss
TLB
Caches

26

Mode switches
System calls (mode switches) should not be
expensive

Called context switches in the paper
Show that 90% of system call time on Mach
is “overhead”

What? Paper doesn’t really say
Could be parameter checking, parameter passing,
inefficiencies in saving state…

L3 does not have this overhead

27

Thread/address space switches
If TLBs are not tagged, they must be flushed

Today? x86 introduced tags but they are not utilized
If caches are physically indexed, no loss of
locality

No need to flush caches when address space
changes

Customize switch code to HW
Empirically demonstrate that IPC is fast

28

Review: End-to-end Core i7 Address
Translation

29

CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR
3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address

(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

Tricks to reduce the effect
TLB flushes due to AS switch could be very
expensive

Since microkernel increases AS switches, this is a
problem
Tagged TLB? If you have them
Tricks with segments to provide isolation between
small address spaces

Remap them as segments within one address space
Avoid TLB flushes

30

Memory effects
Chen and Bershad showed memory behavior on
microkernels worse than monolithic
Paper shows this is all due to more cache misses
Are they capacity or conflict misses?

Conflict: could be structure
Capacity: could be size of code

Chen and Bershad also showed that self-interference
more of a problem than user-kernel interference
Ratio of conflict to capacity much lower in Mach

à too much code, most of it in Mach

31

Conclusion
Its an implementation issue in Mach
Its mostly due to Mach trying to be portable
Microkernel should not be portable

It’s the hardware compatibility layer
Example: implementation decisions even between
486 and Pentium are different if you want high
performance
Think of microkernel as microcode

32

Conclusions
Simplicity and limited exokernel primitives can
be implemented efficiently
Hardware multiplexing can be fast and efficient
Traditional abstractions can be implemented at
the application level
Applications can create special purpose
implementations by modifying libraries

33

