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Extensibility
Problem: How?
Add code to OS

how to preserve isolation?
… without killing performance?

What abstractions?
General principle: mechanisms in OS, policies 
through the extensions
What mechanisms to expose?
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Spin Approach to extensibility
Co-location of kernel and extension

Avoid border crossings
But what about protection?

Language/compiler forced protection
Strongly typed language

Protection by compiler and run-time
Cannot cheat using pointers

Logical protection domains
No longer rely on hardware address spaces to enforce 
protection – no boarder crossings

Dynamic call binding for extensibility
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ExoKernel
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Motivation for Exokernels
Traditional centralized resource management 
cannot be specialized, extended or replaced
Privileged software must be used by all 
applications
Fixed high level abstractions too costly for 
good efficiency
Exo-kernel as an end-to-end argument
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Exokernel Philosophy
Expose hardware to libraryOS

Not even mechanisms are implemented 
by exo-kernel

They argue that mechanism is policy

Exo-kernel worried only about 
protection not resource management
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Design Principles
Track resource ownership
Ensure protection by guarding resource 
usage 
Revoke access to resources
Expose hardware, allocation, names and 
revocation
Basically validate binding, then let library 
manage the resource

7



Exokernel Architecture

8



Separating Security from Management
Secure bindings – securely bind machine 
resources
Visible revocation – allow libOSes to 
participate in resource revocation
Abort protocol – break bindings of 
uncooperative libOSes
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Secure Bindings
Decouple authorization from use
Authorization performed at bind time
Protection checks are simple operations 
performed by the kernel
Allows protection without understanding
Operationally – set of primitives needed for 
applications to express protection checks
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Example resource
TLB Entry

Virtual to physical mapping done by library
Binding presented to exo-kernel
Exokernel puts it in hardware TLB
Process in library OS then uses it without exo-
kernel intervention
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Implementing Secure Bindings
Hardware mechanisms: TLB entry, Packet 
Filters
Software caching: Software TLB stores 
Downloaded Code: invoked on every 
resource access or event to determine 
ownership and kernel actions
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Downloaded Code Example: (DPF) 
Downloaded Packet Filter

Eliminates kernel crossings
Can execute when application is not 
scheduled
Written in a type safe language and compiled 
at runtime for security
Uses Application-specific Safe Handlers 
which can initiate a message to reduce round 
trip latency
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Visible Resource Revocation
Traditionally resources revoked invisibly
Allows libOSes to guide de-allocation and 
have knowledge of available resources – ie: 
can choose own ‘victim page’
Places workload on the libOS to organize 
resource lists
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Abort Protocol
Forced resource revocation
Uses ‘repossession vector’
Raises a repossession exception
Possible relocation depending on state of 
resource
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Managing core services
Virtual memory:

Page fault generates an upcall to the library OS 
via a registered handler
LibOS handles the allocation, then presents a 
mapping to be installed into the TLB providing a 
capability
Exo-kernel installs the mapping
Software TLBs
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Managing CPU
A time vector that gets allocated to the different 
library operating systems

Allows allocation of CPU time to fit the application
Revokes the CPU from the OS using an upcall

The libOS is expected to save what it needs and give 
up the CPU
If not, things escalate
Can install revocation handler in exo-kernel
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Putting it all together
Lets consider an exo-kernel with downloaded 
code into the exo-kernel
When normal processing occurs, Exo-kernel 
is a sleeping beauty
When a discontinuity occurs (traps, faults, 
external interrupts), exokernel fields them

Passes them to the right OS (requires book-
keeping) – compare to SPIN?
Application specific handlers
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Evaluation
Again, a full implementation
How to make sense from the quantitative 
results?

Absolute numbers are typically meaningless given 
that we are part of a bigger system

Trends are what matter

Again, emphasis is on space and time
Key takeawayà at least as good as a monolithic 
kernel
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Questions and conclusions
Downloaded code – security?

Some mention of SFI and little languages
SPIN is better here?

SPIN vs. Exokernel
Spin—extend mechanisms; some abstractions still exist
Exo-kernel: securely expose low-level primitives (primitive vs. 
mechanism?)

Microkernel vs. exo-kernel
Much lower interfaces exported
Argue they lead to better performance
Of course, less border crossing due to downloadable code
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On Microkernel 
construction (L3/4)
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L4 microkernel family
Successful OS with different offshoot 
distributions

Commercially successful
OKLabs OKL4 shipped over 1.5 billion installations by 
2012

Mostly qualcomm wireless modems
But also player in automative and airborne entertainment 
systems

Used in the secure enclave processor on Apple’s A7 
chips

All iOS devices have it! 100s of millions
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Big picture overview
Conventional wisdom at the time was:

Microkernels offer nice abstractions and should be flexible
…but are inherently low performance due to high cost of border 
crossings and IPC
…because they are inefficient they are inflexible

This paper refutes the performance argument 
Main takeaway: its an implementation issue

Identifies reasons for low performance and shows by construction that they 
are not inherent to microkernels

10-20x improvement in performance over Mach

Several insights on how microkernels should (and 
shouldn’t) be built

E.g., Microkernels should not be portable
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Paper argues for the following
Only put in anything that if moved out 
prohibits functionality
Assumes:

We require security/protection
We require a page-based VM
Subsystems should be isolated from one another
Two subsystems should be able to communicate 
without involving a third
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Abstractions provided by L3
Address spaces (to support protection/separation)

Grant, Map, Flush
Handling I/O

Threads and IPC
Threads: represent the address space
End point for IPC (messages)
Interrupts are IPC messages from kernel

Microkernel turns hardware interrupts to thread events

Unique ids (to be able to identify address spaces, 
threads, IPC end points etc..)
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Debunking performance issues
What are the performance issues?
1. Switching overhead

Kernel user switches
Address space switches
Threads switches and IPC

2. Memory locality loss
TLB
Caches
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Mode switches
System calls (mode switches) should not be 
expensive

Called context switches in the paper
Show that 90% of system call time on Mach 
is “overhead”

What?  Paper doesn’t really say
Could be parameter checking, parameter passing, 
inefficiencies in saving state…

L3 does not have this overhead
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Thread/address space switches
If TLBs are not tagged, they must be flushed

Today? x86 introduced tags but they are not utilized
If caches are physically indexed, no loss of 
locality

No need to flush caches when address space 
changes

Customize switch code to HW
Empirically demonstrate that IPC is fast
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Review: End-to-end Core i7 Address 
Translation
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Tricks to reduce the effect
TLB flushes due to AS switch could be very 
expensive

Since microkernel increases AS switches, this is a 
problem
Tagged TLB?  If you have them
Tricks with segments to provide isolation between 
small address spaces 

Remap them as segments within one address space
Avoid TLB flushes
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Memory effects
Chen and Bershad showed memory behavior on 
microkernels worse than monolithic 
Paper shows this is all due to more cache misses
Are they capacity or conflict misses?

Conflict: could be structure
Capacity: could be size of code

Chen and Bershad also showed that self-interference 
more of a problem than user-kernel interference 
Ratio of conflict to capacity much lower in Mach

à too much code, most of it in Mach
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Conclusion 
Its an implementation issue in Mach
Its mostly due to Mach trying to be portable
Microkernel should not be portable

It’s the hardware compatibility layer
Example: implementation decisions even between 
486 and Pentium are different if you want high 
performance
Think of microkernel as microcode
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Conclusions
Simplicity and limited exokernel primitives can 
be implemented efficiently
Hardware multiplexing can be fast and efficient
Traditional abstractions can be implemented at 
the application level
Applications can create special purpose 
implementations by modifying libraries
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