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An Example Memory Hierarchy

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files retrieved 
from disks on remote network 
servers

Main memory holds disk blocks retrieved 
from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from 
L2 cache

CPU registers hold words retrieved from L1 
cache

L2 cache holds cache lines retrieved 
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte
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Memory hierarchy
Cache: A smaller, faster storage device that acts as a staging area for 
a subset of the data in a larger, slower device.

Fundamental idea of a memory hierarchy:
For each layer, faster, smaller device caches larger, slower device 

.
Why do memory hierarchies work?

Because of locality! 
Hit fast memory much more frequently even though its smaller

Thus, the storage at level k+1 can be slower (but larger and cheaper!)

Big Idea:  The memory hierarchy creates a large pool of storage that 
costs as much as the cheap storage near the bottom, but that serves 
data to programs at the rate of the fast storage near the top.
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Virtual Addresses

Many ways to do this translation…
Need hardware support and OS management algorithms 

Requirements
Need protection – restrict which addresses jobs can use
Fast translation – lookups need to be fast
Fast change – updating memory hardware on context switch

vmapprocessor physical
memory

virtual
addresses

physical
addresses
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Paging
Main Idea: split virtual address space into 
multiple partitions

Each can go anywhere!
Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by 
using fixed sized units in both physical and virtual memory But need to keep track 

of where things are!
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Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory



Why Virtual Memory (VM)?
Virtual memory is page with a new ingredient

Allow pages to be on disk 
In a special partition (or file) called swap

Motivation?
Uses main memory efficiently
Use DRAM as a cache for the parts of a virtual address 
space

Simplifies memory management 
Each process gets the same uniform linear address 
space
With VM, this can be big!
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VM as a Tool for Caching
Virtual memory is an array of N contiguous bytes 
stored on disk. 
The contents of the array on disk are cached in 
physical memory (DRAM cache)

These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs) 
stored on disk

Physical pages (PPs) 
cached in DRAM
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Page Tables
A page table is an array of page table entries (PTEs) that maps 
virtual pages to physical pages. 

Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3
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Page Hit
Page hit: reference to VM word that is in physical memory (DRAM 
cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Page Fault
Page fault: reference to VM word that is not in physical memory 
(DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault
Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault
Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault
Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid

0

1

1
0

0

1

0

1

Physical page
number or 

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault
Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid

0

1

1
0

0

1

0

1

Physical page
number or 

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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VM as a Tool for Mem Management
Key idea: each process has its own virtual address space

It can view memory as a simple linear array
Mapping function scatters addresses through physical memory

Well chosen mappings simplify memory allocation and management

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation
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VM as a Tool for Mem Management
Memory allocation

Each virtual page can be mapped to any physical page
A virtual page can be stored in different physical pages at different times

Sharing code and data among processes
Map virtual pages to the same physical page (here: PP 6)

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation
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Sharing
Can map shared memory at same or different 
virtual addresses in each process’ address 
space

Different:
10th virtual page in P1 and 7th virtual page in P2 correspond to 
the 2nd physical page 
Flexible (no address space conflicts), but pointers inside the 
shared memory segment are invalid

Same:
2nd physical page corresponds to the 10th virtual page in both 
P1 and P2 
Less flexible, but shared pointers are valid
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Copy on Write
OSes spend a lot of time copying data

System call arguments between user/kernel space
Entire address spaces to implement fork()

Use Copy on Write (CoW) to defer large copies as long 
as possible, hoping to avoid them altogether

Instead of copying pages, create shared mappings of parent 
pages in child virtual address space
Shared pages are protected as read-only in parent and child

Reads happen as usual
Writes generate a protection fault, trap to OS, copy page, change 
page mapping in client page table, restart write instruction

How does this help fork()?
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Execution of fork()

Page 1

Physical Memory

Page 2

Parent process’s 
page table

Page 1

Child process’s 
page table

Page 2
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fork() with Copy on Write

Page 1

Physical Memory

Page 2

Parent process’s 
page table

Page 1

Child process’s 
page table

Page 2
Protection bits set to prevent either 
process from writing to any page

When either process modifies Page 1, 
page fault handler allocates new page 

and updates PTE in child process 
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Simplifying Linking and Loading

Linking 
Each program has similar virtual 
address space
Code, stack, and shared libraries 
always start at the same address

Loading 
execve() allocates virtual pages 
for .text and .data sections 
= creates PTEs marked as invalid
The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack 
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file
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VM as a Tool for Mem Protection
Extend PTEs with permission bits
Page fault handler checks these before remapping

If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•••

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes

PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical 
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7
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Integrating VM and Cache

VACPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA 
hit

PA 
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Elephant(s) in the room

• Problem 1: Translation is slow!
• Many memory accesses for each memory access
• Caches are useless!

• Problem 2: Page 
table can be 
gigantic!

• We need one for 
each process

• All your memory 
belong to us!
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Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1 like any other 
memory word

PTEs may be evicted by other data references
PTE hit still requires a small L1 delay

Solution: Translation Lookaside Buffer (TLB)
Small hardware cache in MMU
Maps virtual page numbers to  physical page numbers
Contains complete page table entries for small number of pages
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TLB Hit

MMU Cache/
Memory

PA

Data

CPU VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3
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TLB Miss

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
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Multi-Level Page Tables
Suppose:

4KB (212) page size, 48-bit address space, 8-byte PTE 

Problem:
Would need a 512 GB page table!

248 * 2-12  * 23 = 239 bytes

Common solution:
Multi-level page tables
Example: 2-level page table

Level 1 table: each PTE points to a page table (always memory 
resident)
Level 2 table: each PTE points to a page 
(paged in and out like any other data)

Level 1
Table

...

Level 2
Tables

...
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A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages

VP 9215

Virtual
memory

(1K - 9)
null PTEs 

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs
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Extensible Operating 
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Extensibility
What do we mean by extensibility?

Flexible to add new features/functionalities
Good efficiency
Good security 

Can you give a few examples?
Device drivers
Browser plugins/extensions
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Existing Approaches
Directly insert code modules

E.g., Loadable kernel module
Good efficiency
Bad security

Put into a new process
E.g., User-mode driver (e.g., FUSE)
E.g., Microsoft puts browser plugin into a new 
process
Good security
Bad efficiency (context switch/mode switch)



How expensive are border crossings?
Procedure call: save some general-purpose registers 
and jump
Mode switch:

Trap or call gate overhead
Nowadays syscall/sysreturn

Switch to kernel stack
Switch some segment registers

Context switch?
Change address space
This could be expensive; flush TLB, …
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OS design models
Library OS
Monolithic Kernel
Micro Kernel



OS as library (DOS-like)
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Hardware, managed by OS

OS Services and Device drivers

Applications



Monolithic Kernel
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Hardware, managed by OS

OS Services and Device drivers

Applications

What is the difference?



Micro-kernel

41

Hardware, managed by OS

Micro-kernel

Applications

File
System

Memory 
manage
r

CPU 
schedul
er

IPC, Address
Spaces, …



Summary
DOS-like structure: 

good performance and extensibility
Bad protection

Monolithic kernels:
Good performance and protection
Bad extensibility

Microkernels
Very good protection 
Good extensibility
Bad performance!
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