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Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal
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System Calls

For a user program to do something “privileged” (e.g., 
I/O) it must call an OS procedure

Known as crossing the protection boundary, or a protected 
procedure call

Hardware provides a system call instruction that:
Causes an exception, which invokes a kernel handler

Passes a parameter determining the system routine to call
Saves caller state (PC, regs, mode) so it can be restored

Why save mode?
Returning from system call restores this state
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System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to kernel 
mode, save 

state

Trap handler

Find read 
handler

Restore state, 
return to user 
level, resume 

execution
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System Call Questions
There are hundreds of syscalls. How do we let 
the kernel know which one we intend to invoke?

Before issuing int $0x80 or sysenter, set %eax/%rax
with the syscall number

System calls are like function calls, but how to 
pass parameters?

Just like calling convention in syscalls, typically 
passed through %ebx, %ecx, %edx, %esi, %edi, 
%ebp



More questions
How to reference kernel objects (e.g., files, 
sockets)?

Naming problem – an integer mapped to a unique 
object

int fd = open(“file”);  read(fd, buffer);
Why can’t we reference the kernel objects by 
memory address?

5
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Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt software interrupt

! Interrupts signal asynchronous events
u I/O hardware interrupts
u Software and hardware timers
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Timer
The key to a timesharing OS

The fallback mechanism by which the OS reclaims 
control 

Timer is set to generate an interrupt after a period of 
time

Setting timer is a privileged instruction
When timer expires, generates an interrupt

Handled by the OS, forcing a switch from the user program
Basis for OS scheduler (more later…)

Also used for time-based functions (e.g., sleep())
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I/O Control
I/O issues

Initiating an I/O
Completing an I/O

Initiating an I/O
Special instructions
Memory-mapped I/O

Device registers mapped into address space
Writing to address sends data to I/O device
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I/O using Interrupts

Interrupts are the basis for asynchronous I/O
OS initiates I/O
Device operates independently of rest of machine
Device sends an interrupt signal to CPU when 
done
OS maintains a vector table containing a list of 
addresses of kernel routines to handle various 
events
CPU looks up kernel address indexed by interrupt 
number, context switches to routine
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I/O Example
1. Ethernet receives packet, writes packet into memory
2. Ethernet signals an interrupt
3. CPU stops current operation, switches to kernel mode, 

saves machine state (PC, mode, etc.) on kernel stack
4. CPU reads address from vector table indexed by 

interrupt number, branches to address (Ethernet device 
driver)

5. Ethernet device driver processes packet (reads device 
registers to find packet in memory)

6. Upon completion, restores saved state from stack
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Summary
Protection

User/kernel modes
Protected instructions

System calls
Used by user-level processes to access OS functions
Access what is “in” the OS

Exceptions
Unexpected event during execution (e.g., divide by 
zero)

Interrupts
Timer, I/O



Processes
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OS Abstractions
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Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

Today, we start discussing the first abstraction that enables us to virtualize 
(i.e., share) the CPU – processes!
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The Process
The process is the OS abstraction for execution

It is the unit of execution
It is the unit of scheduling

A process is a program in execution
Programs are static entities with the potential for 
execution
Process is the animated/active program

Starts from the program, but also includes dynamic state
As the representative of the program, it is the “owner” of other resources 
(memory, files, sockets, …)

How does the OS implement this abstraction?
How does it share the CPU?
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Process Components
A process contains all the state for a program in 
execution

An address space containing
Static memory:

The code and input data for the executing program
Dynamic memory:

The memory allocated by the executing program
An execution stack encapsulating the state of procedure calls

Control registers such as the program counter (PC) 
A set of general-purpose registers with current values
A set of operating system resources

Open files, network connections, etc.

A process is named using its process ID (PID)
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Address Space (memory abstraction)

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

Static

Dynamic
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Process Execution State
A process is born, executes for a while, and 
then dies

The process execution state that indicates what 
it is currently doing

Running: Executing instructions on the CPU
It is the process that has control of the CPU
How many processes can be in the running state simultaneously?

Ready: Waiting to be assigned to the CPU
Ready to execute, but another process is executing on the CPU

Waiting: Waiting for an event, e.g., I/O completion
It cannot make progress until event is signaled (disk completes)



Execution state (cont’d)
As a process executes, it moves from state to 
state

Unix “ps -x”: STAT column indicates execution 
state
What state do you think a process is in most of 
the time?
How many processes can a system support?

18
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Execution State Graph

New Ready

Running

Waiting

Terminated

Create 
Process

Process 
Exit

I/O, Page 
Fault, etc.

I/O Done

Schedule 
Process

Unschedule 
Process
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How does the OS support this model?

We will discuss three issues:
1. How does the OS represent a process in the kernel?

u The OS data structure representing each process is called the 
Process Control Block (PCB)

2. How do we pause and restart processes?
u We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the 
system? 

u A lot of queues!
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PCB Data Structure
PCB also is where OS keeps all of a process’ hardware 
execution state when the process is not running

Process ID (PID)
Execution state
Hardware state: PC, SP, regs
Memory management
Scheduling
Accounting
Pointers for state queues
Etc.

This state is everything that is needed to restore the 
hardware to the same configuration it was in when the 
process was switched out of the hardware



Xv6 struct proc
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How to pause/restart processes?
When a process is running, its dynamic state is in memory and some 
hardware registers

Hardware registers include Program counter, stack pointer, control registers, data 
registers, …
To be able to stop and restart a process, we need to completely restore this state

When the OS stops running a process, it saves the current values of the 
registers (usually in PCB)

When the OS restarts executing a process, it loads the hardware 
registers from the stored values in PCB

Changing CPU hardware state from one process to another is called a 
context switch

This can happen 100s or 1000s of times a second!
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How does the OS track processes?
The OS maintains a collection of queues that represent 
the state of all processes in the system

Typically, the OS at least one queue for each state
Ready, waiting, etc.

Each PCB is queued on a state queue according to its 
current state

As a process changes state, its PCB is unlinked from 
one queue and linked into another
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State Queues

Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues, 
one for each type of wait (disk, 
console, timer, network, etc.)
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Process (continued)
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Process system call API
Process creation: how to create a new process?

Process termination: how to terminate and clean up a 
process

Coordination between processes
Wait, waitpid, signal, inter-process communication, 
synchronization

Other
E.g., set quotas or priorities, examine usage, …

27
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Process Creation
A process is created by another process

Why is this the case?
Parent is creator, child is created (Unix: ps “PPID” field)
What creates the first process (Unix: init (PID 0 or 1))?

In some systems, the parent defines (or donates) 
resources and privileges for its children

Unix: Process User ID is inherited – children of your shell 
execute with your privileges

After creating a child, the parent may either wait for it to 
finish its task or continue in parallel (or both)
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Process Creation: Windows
The system call on Windows for creating a process is 
called, surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

CreateProcess
Creates and initializes a new PCB
Creates and initializes a new address space
Loads the program specified by “prog” into the address space
Copies “args” into memory allocated in address space
Initializes the saved hardware context to start execution at main 
(or wherever specified in the file)
Places the PCB on the ready queue
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Process Creation: Unix
In Unix, processes are created using fork()
int fork()

fork()
Creates and initializes a new PCB
Creates a new address space
Initializes the address space with a copy of the entire contents 
of the address space of the parent
Initializes the kernel resources to point to the resources used 
by parent (e.g., open files)
Places the PCB on the ready queue

Fork returns twice
Returns the child’s PID to the parent, “0” to the child
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fork()
int main(int argc, char *argv[])
{

char *name = argv[0];
int child_pid = fork();
if (child_pid == 0) {

printf(“Child of %s is %d\n”, name, getpid());
return 0;

} else {

printf(“My child is %d\n”, child_pid);
return 0;

}
}

What does this program print?
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Example Output
[well ~]$ gcc t.c
[well ~]$ ./a.out
My child is 486
Child of a.out is 486
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Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC
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Divergence

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}
PC

PC

child_pid = 486 child_pid = 0
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Example Continued
[well ~]$ gcc t.c
[well ~]$ ./a.out
My child is 486
Child of a.out is 486
[well ~]$ ./a.out
Child of a.out is 498
My child is 498

Why is the output in a different order?
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Why fork()?
Very useful when the child…

Is cooperating with the parent
Relies upon the parent’s data to accomplish its 
task

Example: Web server
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

Handle client request
} else {

Close socket
}

}
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Process Creation: Unix (2)
Wait a second.  How do we actually start a new 
program?
int exec(char *prog, char *argv[])

exec()
Stops the current process
Loads the program “prog” into the process’ address space
Initializes hardware context and args for the new program
Places the PCB onto the ready queue
Note: It does not create a new process

What does it mean for exec to return?
What does it mean for exec to return with an error?
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Process Termination
All good processes must come to an end.  But 
how?

Unix: exit(int status), NT: ExitProcess(int status)
Essentially, free resources and terminate

Terminate all threads (next lecture)
Close open files, network connections
Allocated memory (and VM pages out on disk)
Remove PCB from kernel data structures, delete

Note that a process does not need to clean up 
itself

OS will handle this on its behalf
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wait() a second…
Often it is convenient to pause until a child process has 
finished

Think of executing commands in a shell
Use wait() (WaitForSingleObject) 

Suspends the current process until a child process ends
waitpid() suspends until the specified child process ends

Wait has a return value…what is it?
Unix: Every process must be reaped by a parent

What happens if a parent process exits before a child?
What do you think is a “zombie” process?
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Unix Shells

while (1) {
char *cmd = read_command();
int child_pid = fork();
if (child_pid == 0) {

Manipulate STDIN/OUT/ERR file descriptors for pipes, 
redirection, etc.
exec(cmd);
panic(“exec failed”);

} else {
if (!(run_in_background))

waitpid(child_pid);
}

}



Some issues with processes
Creating a new process is costly because 
of new address space and data structures 
that must be allocated and initialized

Recall struct proc in xv6 or Solaris

Communicating between processes is 
costly because most communication goes 
through the OS

Inter Process Communication (IPC) – we will 
discuss later
Overhead of system calls and copying data
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Parallel Programs
• Also recall our Web server example that forks off copies 

of itself to handle multiple simultaneous requests

• To execute these programs we need to
• Create several processes that execute in parallel
• Cause each to map to the same address space to share data

• They are all part of the same computation
• Have the OS schedule these processes in parallel

• This situation is very inefficient (CoW helps)
• Space: PCB, page tables, etc.
• Time: create data structures, fork and copy addr space, etc.
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Rethinking Processes
What is similar in these cooperating processes?

They all share the same code and data (address space)
They all share the same privileges
They all share the same resources (files, sockets, etc.)

What don’t they share?
Each has its own execution state: PC, SP, and registers

Key idea: Separate resources from execution state
Exec state also called thread of control, or thread
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Threads
! Separate execution and resource container roles

u The thread defines a sequential execution stream within a 
process (PC, SP, registers)

u The process defines the address space, resources, and general 
process attributes (everything but threads)

! Threads become the unit of scheduling
u Processes are now the containers in which threads execute
u Processes become static, threads are the dynamic entities
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Recap: Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC
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Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)
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Threads: Concurrent Servers
Using fork() to create new processes to handle 
requests in parallel is overkill for such a simple 
task
Recall our forking Web server:
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

Handle client request
Close socket and exit

} else {

Close socket
}

}
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Threads: Concurrent Servers
Instead, we can create a new thread for each 
request
web_server() {

while (1) {
int sock = accept();
thread_fork(handle_request, sock);

}

}

handle_request(int sock) {
Process request
close(sock);

}
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Implementing threads

! Kernel Level Threads
! All thread operations are implemented in the kernel
� The OS schedules all of the threads in the system
� Don’t have to separate from processes

! OS-managed threads are called kernel-level threads or 
lightweight processes
� Windows: threads
� Solaris: lightweight processes (LWP)
� POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM 
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Kernel Thread (KLT) Limitations
! KLTs make concurrency cheaper than processes

u Much less state to allocate and initialize

! However, there are a couple of issues
u Issue 1: KLT overhead still high 

Thread operations still require system calls
Ideally, want thread operations to be as fast as a procedure call

u Issue 2: KLTs are general; unaware of application needs

! Alternative: User-level threads (ULT)
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Alternative: User-Level Threads
Implement threads using user-level library

ULTs are small and fast
A thread is simply represented by a PC, registers, stack, and 
small thread control block (TCB)
Creating a new thread, switching between threads, and 
synchronizing threads are done via procedure call

No kernel involvement
User-level thread operations 100x faster than kernel threads
pthreads: PTHREAD_SCOPE_PROCESS 
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Summary KLT vs. ULT
Kernel-level threads

Integrated with OS (informed scheduling)
Slow to create, manipulate, synchronize

User-level threads
Fast to create, manipulate, synchronize
Not integrated with OS (uninformed scheduling)

Understanding the differences between 
kernel and user-level threads is important

For programming (correctness, performance)
For test-taking J
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Sample Thread Interface
thread_fork(procedure_t)

Create a new thread of control
Also thread_create(), thread_setstate()

thread_stop()
Stop the calling thread; also thread_block

thread_start(thread_t)
Start the given thread

thread_yield()
Voluntarily give up the processor

thread_exit()
Terminate the calling thread; also thread_destroy


