
1

Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal

2

System Calls

For a user program to do something “privileged” (e.g.,
I/O) it must call an OS procedure

Known as crossing the protection boundary, or a protected
procedure call

Hardware provides a system call instruction that:
Causes an exception, which invokes a kernel handler

Passes a parameter determining the system routine to call
Saves caller state (PC, regs, mode) so it can be restored

Why save mode?
Returning from system call restores this state

3

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to kernel
mode, save

state

Trap handler

Find read
handler

Restore state,
return to user
level, resume

execution

4

System Call Questions
There are hundreds of syscalls. How do we let
the kernel know which one we intend to invoke?

Before issuing int $0x80 or sysenter, set %eax/%rax
with the syscall number

System calls are like function calls, but how to
pass parameters?

Just like calling convention in syscalls, typically
passed through %ebx, %ecx, %edx, %esi, %edi,
%ebp

More questions
How to reference kernel objects (e.g., files,
sockets)?

Naming problem – an integer mapped to a unique
object

int fd = open(“file”); read(fd, buffer);
Why can’t we reference the kernel objects by
memory address?

5

6

Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt software interrupt

! Interrupts signal asynchronous events
u I/O hardware interrupts
u Software and hardware timers

7

Timer
The key to a timesharing OS

The fallback mechanism by which the OS reclaims
control

Timer is set to generate an interrupt after a period of
time

Setting timer is a privileged instruction
When timer expires, generates an interrupt

Handled by the OS, forcing a switch from the user program
Basis for OS scheduler (more later…)

Also used for time-based functions (e.g., sleep())

8

I/O Control
I/O issues

Initiating an I/O
Completing an I/O

Initiating an I/O
Special instructions
Memory-mapped I/O

Device registers mapped into address space
Writing to address sends data to I/O device

9

I/O using Interrupts

Interrupts are the basis for asynchronous I/O
OS initiates I/O
Device operates independently of rest of machine
Device sends an interrupt signal to CPU when
done
OS maintains a vector table containing a list of
addresses of kernel routines to handle various
events
CPU looks up kernel address indexed by interrupt
number, context switches to routine

10

I/O Example
1. Ethernet receives packet, writes packet into memory
2. Ethernet signals an interrupt
3. CPU stops current operation, switches to kernel mode,

saves machine state (PC, mode, etc.) on kernel stack
4. CPU reads address from vector table indexed by

interrupt number, branches to address (Ethernet device
driver)

5. Ethernet device driver processes packet (reads device
registers to find packet in memory)

6. Upon completion, restores saved state from stack

11

Summary
Protection

User/kernel modes
Protected instructions

System calls
Used by user-level processes to access OS functions
Access what is “in” the OS

Exceptions
Unexpected event during execution (e.g., divide by
zero)

Interrupts
Timer, I/O

Processes

12

OS Abstractions

13

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

Today, we start discussing the first abstraction that enables us to virtualize
(i.e., share) the CPU – processes!

14

The Process
The process is the OS abstraction for execution

It is the unit of execution
It is the unit of scheduling

A process is a program in execution
Programs are static entities with the potential for
execution
Process is the animated/active program

Starts from the program, but also includes dynamic state
As the representative of the program, it is the “owner” of other resources
(memory, files, sockets, …)

How does the OS implement this abstraction?
How does it share the CPU?

15

Process Components
A process contains all the state for a program in
execution

An address space containing
Static memory:

The code and input data for the executing program
Dynamic memory:

The memory allocated by the executing program
An execution stack encapsulating the state of procedure calls

Control registers such as the program counter (PC)
A set of general-purpose registers with current values
A set of operating system resources

Open files, network connections, etc.

A process is named using its process ID (PID)

16

Address Space (memory abstraction)

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

Static

Dynamic

17

Process Execution State
A process is born, executes for a while, and
then dies

The process execution state that indicates what
it is currently doing

Running: Executing instructions on the CPU
It is the process that has control of the CPU
How many processes can be in the running state simultaneously?

Ready: Waiting to be assigned to the CPU
Ready to execute, but another process is executing on the CPU

Waiting: Waiting for an event, e.g., I/O completion
It cannot make progress until event is signaled (disk completes)

Execution state (cont’d)
As a process executes, it moves from state to
state

Unix “ps -x”: STAT column indicates execution
state
What state do you think a process is in most of
the time?
How many processes can a system support?

18

19

Execution State Graph

New Ready

Running

Waiting

Terminated

Create
Process

Process
Exit

I/O, Page
Fault, etc.

I/O Done

Schedule
Process

Unschedule
Process

20

How does the OS support this model?

We will discuss three issues:
1. How does the OS represent a process in the kernel?

u The OS data structure representing each process is called the
Process Control Block (PCB)

2. How do we pause and restart processes?
u We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the
system?

u A lot of queues!

21

PCB Data Structure
PCB also is where OS keeps all of a process’ hardware
execution state when the process is not running

Process ID (PID)
Execution state
Hardware state: PC, SP, regs
Memory management
Scheduling
Accounting
Pointers for state queues
Etc.

This state is everything that is needed to restore the
hardware to the same configuration it was in when the
process was switched out of the hardware

Xv6 struct proc

22

23

How to pause/restart processes?
When a process is running, its dynamic state is in memory and some
hardware registers

Hardware registers include Program counter, stack pointer, control registers, data
registers, …
To be able to stop and restart a process, we need to completely restore this state

When the OS stops running a process, it saves the current values of the
registers (usually in PCB)

When the OS restarts executing a process, it loads the hardware
registers from the stored values in PCB

Changing CPU hardware state from one process to another is called a
context switch

This can happen 100s or 1000s of times a second!

24

How does the OS track processes?
The OS maintains a collection of queues that represent
the state of all processes in the system

Typically, the OS at least one queue for each state
Ready, waiting, etc.

Each PCB is queued on a state queue according to its
current state

As a process changes state, its PCB is unlinked from
one queue and linked into another

25

State Queues

Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

Advanced Operating Systems
(CS 202)

Process (continued)

26

Process system call API
Process creation: how to create a new process?

Process termination: how to terminate and clean up a
process

Coordination between processes
Wait, waitpid, signal, inter-process communication,
synchronization

Other
E.g., set quotas or priorities, examine usage, …

27

28

Process Creation
A process is created by another process

Why is this the case?
Parent is creator, child is created (Unix: ps “PPID” field)
What creates the first process (Unix: init (PID 0 or 1))?

In some systems, the parent defines (or donates)
resources and privileges for its children

Unix: Process User ID is inherited – children of your shell
execute with your privileges

After creating a child, the parent may either wait for it to
finish its task or continue in parallel (or both)

29

Process Creation: Windows
The system call on Windows for creating a process is
called, surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

CreateProcess
Creates and initializes a new PCB
Creates and initializes a new address space
Loads the program specified by “prog” into the address space
Copies “args” into memory allocated in address space
Initializes the saved hardware context to start execution at main
(or wherever specified in the file)
Places the PCB on the ready queue

30

Process Creation: Unix
In Unix, processes are created using fork()
int fork()

fork()
Creates and initializes a new PCB
Creates a new address space
Initializes the address space with a copy of the entire contents
of the address space of the parent
Initializes the kernel resources to point to the resources used
by parent (e.g., open files)
Places the PCB on the ready queue

Fork returns twice
Returns the child’s PID to the parent, “0” to the child

31

fork()
int main(int argc, char *argv[])
{

char *name = argv[0];
int child_pid = fork();
if (child_pid == 0) {

printf(“Child of %s is %d\n”, name, getpid());
return 0;

} else {

printf(“My child is %d\n”, child_pid);
return 0;

}
}

What does this program print?

32

Example Output
[well ~]$ gcc t.c
[well ~]$./a.out
My child is 486
Child of a.out is 486

33

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

34

Divergence

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}
PC

PC

child_pid = 486 child_pid = 0

35

Example Continued
[well ~]$ gcc t.c
[well ~]$./a.out
My child is 486
Child of a.out is 486
[well ~]$./a.out
Child of a.out is 498
My child is 498

Why is the output in a different order?

36

Why fork()?
Very useful when the child…

Is cooperating with the parent
Relies upon the parent’s data to accomplish its
task

Example: Web server
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

Handle client request
} else {

Close socket
}

}

37

Process Creation: Unix (2)
Wait a second. How do we actually start a new
program?
int exec(char *prog, char *argv[])

exec()
Stops the current process
Loads the program “prog” into the process’ address space
Initializes hardware context and args for the new program
Places the PCB onto the ready queue
Note: It does not create a new process

What does it mean for exec to return?
What does it mean for exec to return with an error?

38

Process Termination
All good processes must come to an end. But
how?

Unix: exit(int status), NT: ExitProcess(int status)
Essentially, free resources and terminate

Terminate all threads (next lecture)
Close open files, network connections
Allocated memory (and VM pages out on disk)
Remove PCB from kernel data structures, delete

Note that a process does not need to clean up
itself

OS will handle this on its behalf

39

wait() a second…
Often it is convenient to pause until a child process has
finished

Think of executing commands in a shell
Use wait() (WaitForSingleObject)

Suspends the current process until a child process ends
waitpid() suspends until the specified child process ends

Wait has a return value…what is it?
Unix: Every process must be reaped by a parent

What happens if a parent process exits before a child?
What do you think is a “zombie” process?

40

Unix Shells

while (1) {
char *cmd = read_command();
int child_pid = fork();
if (child_pid == 0) {

Manipulate STDIN/OUT/ERR file descriptors for pipes,
redirection, etc.
exec(cmd);
panic(“exec failed”);

} else {
if (!(run_in_background))

waitpid(child_pid);
}

}

Some issues with processes
Creating a new process is costly because
of new address space and data structures
that must be allocated and initialized

Recall struct proc in xv6 or Solaris

Communicating between processes is
costly because most communication goes
through the OS

Inter Process Communication (IPC) – we will
discuss later
Overhead of system calls and copying data

41

Parallel Programs
• Also recall our Web server example that forks off copies

of itself to handle multiple simultaneous requests

• To execute these programs we need to
• Create several processes that execute in parallel
• Cause each to map to the same address space to share data

• They are all part of the same computation
• Have the OS schedule these processes in parallel

• This situation is very inefficient (CoW helps)
• Space: PCB, page tables, etc.
• Time: create data structures, fork and copy addr space, etc.

42

43

Rethinking Processes
What is similar in these cooperating processes?

They all share the same code and data (address space)
They all share the same privileges
They all share the same resources (files, sockets, etc.)

What don’t they share?
Each has its own execution state: PC, SP, and registers

Key idea: Separate resources from execution state
Exec state also called thread of control, or thread

44

Threads
! Separate execution and resource container roles

u The thread defines a sequential execution stream within a
process (PC, SP, registers)

u The process defines the address space, resources, and general
process attributes (everything but threads)

! Threads become the unit of scheduling
u Processes are now the containers in which threads execute
u Processes become static, threads are the dynamic entities

45

Recap: Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

46

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

47

Threads: Concurrent Servers
Using fork() to create new processes to handle
requests in parallel is overkill for such a simple
task
Recall our forking Web server:
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

Handle client request
Close socket and exit

} else {

Close socket
}

}

48

Threads: Concurrent Servers
Instead, we can create a new thread for each
request
web_server() {

while (1) {
int sock = accept();
thread_fork(handle_request, sock);

}

}

handle_request(int sock) {
Process request
close(sock);

}

49

Implementing threads

! Kernel Level Threads
! All thread operations are implemented in the kernel
� The OS schedules all of the threads in the system
� Don’t have to separate from processes

! OS-managed threads are called kernel-level threads or
lightweight processes
� Windows: threads
� Solaris: lightweight processes (LWP)
� POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

50

Kernel Thread (KLT) Limitations
! KLTs make concurrency cheaper than processes

u Much less state to allocate and initialize

! However, there are a couple of issues
u Issue 1: KLT overhead still high

Thread operations still require system calls
Ideally, want thread operations to be as fast as a procedure call

u Issue 2: KLTs are general; unaware of application needs

! Alternative: User-level threads (ULT)

51

Alternative: User-Level Threads
Implement threads using user-level library

ULTs are small and fast
A thread is simply represented by a PC, registers, stack, and
small thread control block (TCB)
Creating a new thread, switching between threads, and
synchronizing threads are done via procedure call

No kernel involvement
User-level thread operations 100x faster than kernel threads
pthreads: PTHREAD_SCOPE_PROCESS

52

Summary KLT vs. ULT
Kernel-level threads

Integrated with OS (informed scheduling)
Slow to create, manipulate, synchronize

User-level threads
Fast to create, manipulate, synchronize
Not integrated with OS (uninformed scheduling)

Understanding the differences between
kernel and user-level threads is important

For programming (correctness, performance)
For test-taking J

53

Sample Thread Interface
thread_fork(procedure_t)

Create a new thread of control
Also thread_create(), thread_setstate()

thread_stop()
Stop the calling thread; also thread_block

thread_start(thread_t)
Start the given thread

thread_yield()
Voluntarily give up the processor

thread_exit()
Terminate the calling thread; also thread_destroy

