
Advanced Operating Systems
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OS Evolution and 
Organization



Dawn of computing

• Pre 1950 : the very first electronic computers
valves and relays
single program with dedicated function

• Pre 1960 : stored program valve machines
single job at a time; OS is  a program loader
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Phase 0 of OS Evolution (40s to 1955)
No OS

Computers are exotic, expensive, large, slow 
experimental equipment
Program in machine language and using plugboards
User sits at console: no overlap between computation, 
I/O, user thinking, etc..

Program manually by plugging wires in
Goal: number crunching for missile computations

Imagine programming that way
Painful and slow
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OS progress in this period
Libraries of routines that are common

Including those to talk to I/O devices
Punch cards (enabling copying/exchange of these 
libraries) a big advance!
Pre-cursor to OS
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Phase 1: 1955-1970
Computers expensive; people cheap

Use computers efficiently – move people away 
from machine
OS becomes a batch monitor

Loads a job, runs it, then moves on to next
If a program fails, OS records memory contents 
somewhere
More efficient use of hardware but increasingly difficult 
to debug
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Batch systems on mainframe computers
collections of jobs made up into a batch
example: IBM 1401/7094

card decks spooled onto magnetic tape and from tape to printer

example: English Electric Leo KDF9 
32K 48-bit words, 2µsec cycle time
punched paper-tape input ‘walk-up’ service or spooling via mag tape
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Advances in technology in this stage
Data channels and interrupts

Allow overlap of I/O and computing
Buffering and interrupt handling done by OS
Spool (buffer) jobs onto “high speed” drums
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Phase 1, problems
Utilization is low (one job at a time)
No protection between jobs
Short jobs wait behind long jobs

So, we can only run one job at a time
Coordinating concurrent activities
Still painful and slow (but less so?)
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Advances in OS in this period
Hardware provided memory support (protection 
and relocation)
Multiprogramming (not to be confused with time 
sharing)
Scheduling: let short jobs run first
OS must manage interactions between 
concurrent things

Starts emerging as a field/science
OS/360 from IBM first OS designed to run on a 
family of machines from small to large

9



Some important projects
Atlas computer/OS from Manchester U. (late 
50s/early 60s)

First recognizable OS
Separate address space for kernel
Early virtual memory

THE Multiprogramming system (early 60s)
Introduced semaphores
Attempt at proving systems correct; interesting 
software engineering insights
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Not all is smooth
Operating systems didn’t really work
No software development or structuring tools; 
written in assembly
OS/360 introduced in 1963 but did not really 
work until 1968

Reported on in mythical man month
Extremely complicated systems

5-7 years development time typical
Written in assembly, with no structured programming
Birth of software engineering?
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Phase 2: 1970s
Computers and people are expensive

Help people be more productive
Interactive time sharing: let many people use the 
same machine at the same time
Emergence of minicomputers

Terminals are cheap
Keep data online on fancy file systems
Attempt to provide reasonable response times 
(Avoid thrashing)
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Important advances and systems
Compatible Time-Sharing System (CTSS)

MIT project (demonstrated in 1961)
One of the first time sharing systems
Corbato won Turing award in 1990
Pioneered much of the work in scheduling
Motivated MULTICS
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MULTICS
Jointly developed by MIT, Bell Labs and GE
Envisioned one main computer to support 
everyone

People use computing like a utility like electricity –
sound familiar?  Ideas get recycled

Many many fundamental ideas: protection rings, 
hierarchical file systems, devices as files, …
Building it was more difficult than expected
Technology caught up
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Unix appears
Ken Thompson, who worked on MULTICS, wanted to 
use an old PDP-7 laying around in Bell labs
He and Dennis Richie built a system designed by 
programmers for programmers
Originally in assembly.  Rewritten in C

If you notice for the paper, they are defending this decision
However, this is a new and important advance: portable 
operating systems!

Shared code with everyone (particularly universities)
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Unix (cont’d)
Berkeley added support for virtual memory 
for the VAX
DARPA selected Unix as its networking 
platform in arpanet
Unix became commercial

…which eventually lead Linus Torvald to develop 
Linux
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Some important ideas in Unix
OS written in a high level language
OS portable across hardware platforms

Computing is no longer a pipe stove/vertical system
Pipes

E.g., grep foo file.txt | wc -l
Mountable file systems
Many more (we’ll talk about unix later)
1983 Turing Award
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Phase 3: 1980s 
Computers are cheap, people expensive

Put a computer in each terminal
CP/M from DEC first personal computer OS (for 
8080/85) processors
IBM needed software for their PCs, but CP/M was 
behind schedule
Approached Bill Gates to see if he can build one
Gates approached Seattle computer products, bought 
86-DOS and created MS-DOS
Goal: finish quickly and run existing CP/M software
OS becomes subroutine library and command 
executive
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New advances in OS
PC OS was a regression for OS 

Stepped back to primitive phase 1 style OS 
leaving the cool developments that occurred in 
phase 2

Academia was still active, and some 
developments still occurred in mainframe and 
workstation space
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Phase 4: Networked systems
1990s to 2010s

Machines can talk to each other
its all about connectivity

We want to share data not hardware
Networked applications drive everything

Web, email, messaging, social networks, …
Protection and multiprogramming less important 
for personal machines

But more important for servers
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Phase 4, continued
Market place continued horizontal stratification

ISPs (service between OS and applications)
Information is a commodity
Advertising a new marketplace

New network based architectures
Client server
Clusters
Grids
Distributed operating systems
Cloud computing (or is that phase 5?)
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New problems
Large scale

Google file system, mapreduce, …
Concurrency at large scale 

ACID (Atomicity, Consistency, Isolation and 
Durability) in Internet Scale systems

Very large delays
Partitioning

Security and Privacy
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Phase 5: 2010s -- ??
New generation?
Mobile devices that are powerful
Sensing: location, motion, …
Cyberphysical systems
Computing evolving beyond networked 
systems

But OS for them looks largely the same
Is that a good idea?
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OS model and 
Architectural Support



Sleeping Beauty Model

Answer: Sleeping beauty model
Technically known as controlled direct execution
OS runs in response to “events”; we support the switch in 
hardware
Only the OS can manipulate hardware or critical system state

Most of the time the OS is sleeping
Good!  Less overhead
Good!  Applications are running directly on the hardware
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What do we need from the 
architecture/CPU?

Manipulating privileged machine state
Protected instructions
Manipulate device registers, TLB entries, etc.
Controlling access

Generating and handling “events”
Interrupts, exceptions, system calls, etc.
Respond to external events
CPU requires software intervention to handle fault or trap

Other stuff
Mechanisms to handle concurrency, Isolation, virtualization …



27

Protected Instructions
OS must have exclusive access to hardware and 
critical data structures

Only the operating system can 
Directly access I/O devices (disks, printers, etc.)

Security, fairness (why?)
Manipulate memory management state

Page table pointers, page protection, TLB management, etc.
Manipulate protected control registers 

Kernel mode, interrupt level
Halt instruction (why?)
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Privilege mode

Hardware restricts privileged instructions to OS

Q: How does the HW know if the executed program is OS?
HW must support (at least) two execution modes: OS (kernel) mode 
and user mode

Mode kept in a status bit in a protected control register
User programs execute in user mode
OS executes in kernel mode (OS == “kernel”)
CPU checks mode bit when protected instruction executes
Attempts to execute in user mode trap to OS



Switching back and forth
Going from higher privilege to lower privilege

Easy: can directly modify the mode register to drop 
privilege

But how do we escalate privilege?
Special instructions to change mode

System calls (int 0x80, syscall, svc)
Saves context and invokes designated handler

You jump to the privileged code; you cannot execute your own
OS checks your syscall request and honors it only if safe

Or, some kind of event happens in the system
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Types of Arch Support
Manipulating privileged machine state

Protected instructions
Manipulate device registers, TLB entries, etc.
Controlling access

Generating and handling “events”
Interrupts, exceptions, system calls, etc.
Respond to external events
CPU requires software intervention to handle fault or 
trap

Other stuff
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Events
An event is an “unnatural” change in control flow

Events immediately stop current execution
Changes mode, context (machine state), or both

The kernel defines a handler for each event type
Event handlers always execute in kernel mode
The specific types of events are defined by the machine

Once the system is booted, OS is one big event handler
all entry to the kernel occurs as the result of an event



Handling events – Interrupt vector table
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Processor
 Register Interrupt

  Vector

...

...

handleTimerInterrupt() {
 ...
}

handleDivideByZero() {
 ...
}

handleSystemCall() {
 ...
}
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Categorizing Events

This gives us a convenient table:

Terms may be slightly different by OS and architecture
E.g., POSIX signals, asynch system traps, async or deferred 
procedure calls

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal
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Faults
Hardware detects and reports “exceptional” conditions

Page fault, memory access violation (unaligned, permission, not 
mapped, bounds…), illegal instruction, divide by zero

Upon exception, hardware “faults” (verb)
Must save state (PC, regs, mode, etc.) so that the faulting 
process can be restarted
Invokes registered handler



35

Handling Faults

Some faults are handled by “fixing” the 
exceptional condition and returning to the 
faulting context

Page faults cause the OS to place the missing 
page into memory
Fault handler resets PC of faulting context to re-
execute instruction that caused the page fault
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Handling Faults
The kernel may handle unrecoverable faults by killing the 
user process

Program fault with no registered handler
Halt process, write process state to file, destroy process
In Unix, the default action for many signals (e.g., SIGSEGV)

What about faults in the kernel?
Dereference NULL, divide by zero, undefined instruction
These faults considered fatal, operating system crashes
Unix panic, Windows “Blue screen of death”

Kernel is halted, state dumped to a core file, machine locked up
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Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal
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System Calls

For a user program to do something “privileged” (e.g., 
I/O) it must call an OS procedure

Known as crossing the protection boundary, or a protected 
procedure call

Hardware provides a system call instruction that:
Causes an exception, which invokes a kernel handler

Passes a parameter determining the system routine to call
Saves caller state (PC, regs, mode) so it can be restored

Why save mode?
Returning from system call restores this state



39

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to kernel 
mode, save 

state

Trap handler

Find read 
handler

Restore state, 
return to user 
level, resume 

execution
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System Call Questions
There are hundreds of syscalls. How do we let 
the kernel know which one we intend to invoke?

Before issuing int $0x80 or sysenter, set %eax/%rax
with the syscall number

System calls are like function calls, but how to 
pass parameters?

Just like calling convention in syscalls, typically 
passed through %ebx, %ecx, %edx, %esi, %edi, 
%ebp


