
Advanced Operating Systems
(CS 202)

OS Evolution and
Organization

Dawn of computing

• Pre 1950 : the very first electronic computers
valves and relays
single program with dedicated function

• Pre 1960 : stored program valve machines
single job at a time; OS is a program loader

2

program CPU printer

Phase 0 of OS Evolution (40s to 1955)
No OS

Computers are exotic, expensive, large, slow
experimental equipment
Program in machine language and using plugboards
User sits at console: no overlap between computation,
I/O, user thinking, etc..

Program manually by plugging wires in
Goal: number crunching for missile computations

Imagine programming that way
Painful and slow

3

OS progress in this period
Libraries of routines that are common

Including those to talk to I/O devices
Punch cards (enabling copying/exchange of these
libraries) a big advance!
Pre-cursor to OS

4

Phase 1: 1955-1970
Computers expensive; people cheap

Use computers efficiently – move people away
from machine
OS becomes a batch monitor

Loads a job, runs it, then moves on to next
If a program fails, OS records memory contents
somewhere
More efficient use of hardware but increasingly difficult
to debug

5

Batch systems on mainframe computers
collections of jobs made up into a batch
example: IBM 1401/7094

card decks spooled onto magnetic tape and from tape to printer

example: English Electric Leo KDF9
32K 48-bit words, 2µsec cycle time
punched paper-tape input ‘walk-up’ service or spooling via mag tape

6

Advances in technology in this stage
Data channels and interrupts

Allow overlap of I/O and computing
Buffering and interrupt handling done by OS
Spool (buffer) jobs onto “high speed” drums

7

Phase 1, problems
Utilization is low (one job at a time)
No protection between jobs
Short jobs wait behind long jobs

So, we can only run one job at a time
Coordinating concurrent activities
Still painful and slow (but less so?)

8

Advances in OS in this period
Hardware provided memory support (protection
and relocation)
Multiprogramming (not to be confused with time
sharing)
Scheduling: let short jobs run first
OS must manage interactions between
concurrent things

Starts emerging as a field/science
OS/360 from IBM first OS designed to run on a
family of machines from small to large

9

Some important projects
Atlas computer/OS from Manchester U. (late
50s/early 60s)

First recognizable OS
Separate address space for kernel
Early virtual memory

THE Multiprogramming system (early 60s)
Introduced semaphores
Attempt at proving systems correct; interesting
software engineering insights

10

Not all is smooth
Operating systems didn’t really work
No software development or structuring tools;
written in assembly
OS/360 introduced in 1963 but did not really
work until 1968

Reported on in mythical man month
Extremely complicated systems

5-7 years development time typical
Written in assembly, with no structured programming
Birth of software engineering?

11

Phase 2: 1970s
Computers and people are expensive

Help people be more productive
Interactive time sharing: let many people use the
same machine at the same time
Emergence of minicomputers

Terminals are cheap
Keep data online on fancy file systems
Attempt to provide reasonable response times
(Avoid thrashing)

12

Important advances and systems
Compatible Time-Sharing System (CTSS)

MIT project (demonstrated in 1961)
One of the first time sharing systems
Corbato won Turing award in 1990
Pioneered much of the work in scheduling
Motivated MULTICS

13

MULTICS
Jointly developed by MIT, Bell Labs and GE
Envisioned one main computer to support
everyone

People use computing like a utility like electricity –
sound familiar? Ideas get recycled

Many many fundamental ideas: protection rings,
hierarchical file systems, devices as files, …
Building it was more difficult than expected
Technology caught up

14

Unix appears
Ken Thompson, who worked on MULTICS, wanted to
use an old PDP-7 laying around in Bell labs
He and Dennis Richie built a system designed by
programmers for programmers
Originally in assembly. Rewritten in C

If you notice for the paper, they are defending this decision
However, this is a new and important advance: portable
operating systems!

Shared code with everyone (particularly universities)

15

Unix (cont’d)
Berkeley added support for virtual memory
for the VAX
DARPA selected Unix as its networking
platform in arpanet
Unix became commercial

…which eventually lead Linus Torvald to develop
Linux

16

Some important ideas in Unix
OS written in a high level language
OS portable across hardware platforms

Computing is no longer a pipe stove/vertical system
Pipes

E.g., grep foo file.txt | wc -l
Mountable file systems
Many more (we’ll talk about unix later)
1983 Turing Award

17

Ken Thompson Dennis M. Ritchie

Phase 3: 1980s
Computers are cheap, people expensive

Put a computer in each terminal
CP/M from DEC first personal computer OS (for
8080/85) processors
IBM needed software for their PCs, but CP/M was
behind schedule
Approached Bill Gates to see if he can build one
Gates approached Seattle computer products, bought
86-DOS and created MS-DOS
Goal: finish quickly and run existing CP/M software
OS becomes subroutine library and command
executive

18

New advances in OS
PC OS was a regression for OS

Stepped back to primitive phase 1 style OS
leaving the cool developments that occurred in
phase 2

Academia was still active, and some
developments still occurred in mainframe and
workstation space

19

Phase 4: Networked systems
1990s to 2010s

Machines can talk to each other
its all about connectivity

We want to share data not hardware
Networked applications drive everything

Web, email, messaging, social networks, …
Protection and multiprogramming less important
for personal machines

But more important for servers

20

Phase 4, continued
Market place continued horizontal stratification

ISPs (service between OS and applications)
Information is a commodity
Advertising a new marketplace

New network based architectures
Client server
Clusters
Grids
Distributed operating systems
Cloud computing (or is that phase 5?)

21

New problems
Large scale

Google file system, mapreduce, …
Concurrency at large scale

ACID (Atomicity, Consistency, Isolation and
Durability) in Internet Scale systems

Very large delays
Partitioning

Security and Privacy

22

Phase 5: 2010s -- ??
New generation?
Mobile devices that are powerful
Sensing: location, motion, …
Cyberphysical systems
Computing evolving beyond networked
systems

But OS for them looks largely the same
Is that a good idea?

23

OS model and
Architectural Support

Sleeping Beauty Model

Answer: Sleeping beauty model
Technically known as controlled direct execution
OS runs in response to “events”; we support the switch in
hardware
Only the OS can manipulate hardware or critical system state

Most of the time the OS is sleeping
Good! Less overhead
Good! Applications are running directly on the hardware

25

26

What do we need from the
architecture/CPU?

Manipulating privileged machine state
Protected instructions
Manipulate device registers, TLB entries, etc.
Controlling access

Generating and handling “events”
Interrupts, exceptions, system calls, etc.
Respond to external events
CPU requires software intervention to handle fault or trap

Other stuff
Mechanisms to handle concurrency, Isolation, virtualization …

27

Protected Instructions
OS must have exclusive access to hardware and
critical data structures

Only the operating system can
Directly access I/O devices (disks, printers, etc.)

Security, fairness (why?)
Manipulate memory management state

Page table pointers, page protection, TLB management, etc.
Manipulate protected control registers

Kernel mode, interrupt level
Halt instruction (why?)

28

Privilege mode

Hardware restricts privileged instructions to OS

Q: How does the HW know if the executed program is OS?
HW must support (at least) two execution modes: OS (kernel) mode
and user mode

Mode kept in a status bit in a protected control register
User programs execute in user mode
OS executes in kernel mode (OS == “kernel”)
CPU checks mode bit when protected instruction executes
Attempts to execute in user mode trap to OS

Switching back and forth
Going from higher privilege to lower privilege

Easy: can directly modify the mode register to drop
privilege

But how do we escalate privilege?
Special instructions to change mode

System calls (int 0x80, syscall, svc)
Saves context and invokes designated handler

You jump to the privileged code; you cannot execute your own
OS checks your syscall request and honors it only if safe

Or, some kind of event happens in the system

29

30

Types of Arch Support
Manipulating privileged machine state

Protected instructions
Manipulate device registers, TLB entries, etc.
Controlling access

Generating and handling “events”
Interrupts, exceptions, system calls, etc.
Respond to external events
CPU requires software intervention to handle fault or
trap

Other stuff

31

Events
An event is an “unnatural” change in control flow

Events immediately stop current execution
Changes mode, context (machine state), or both

The kernel defines a handler for each event type
Event handlers always execute in kernel mode
The specific types of events are defined by the machine

Once the system is booted, OS is one big event handler
all entry to the kernel occurs as the result of an event

Handling events – Interrupt vector table

32

Processor
 Register Interrupt

 Vector

...

...

handleTimerInterrupt() {
 ...
}

handleDivideByZero() {
 ...
}

handleSystemCall() {
 ...
}

33

Categorizing Events

This gives us a convenient table:

Terms may be slightly different by OS and architecture
E.g., POSIX signals, asynch system traps, async or deferred
procedure calls

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal

34

Faults
Hardware detects and reports “exceptional” conditions

Page fault, memory access violation (unaligned, permission, not
mapped, bounds…), illegal instruction, divide by zero

Upon exception, hardware “faults” (verb)
Must save state (PC, regs, mode, etc.) so that the faulting
process can be restarted
Invokes registered handler

35

Handling Faults

Some faults are handled by “fixing” the
exceptional condition and returning to the
faulting context

Page faults cause the OS to place the missing
page into memory
Fault handler resets PC of faulting context to re-
execute instruction that caused the page fault

36

Handling Faults
The kernel may handle unrecoverable faults by killing the
user process

Program fault with no registered handler
Halt process, write process state to file, destroy process
In Unix, the default action for many signals (e.g., SIGSEGV)

What about faults in the kernel?
Dereference NULL, divide by zero, undefined instruction
These faults considered fatal, operating system crashes
Unix panic, Windows “Blue screen of death”

Kernel is halted, state dumped to a core file, machine locked up

37

Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt signal

38

System Calls

For a user program to do something “privileged” (e.g.,
I/O) it must call an OS procedure

Known as crossing the protection boundary, or a protected
procedure call

Hardware provides a system call instruction that:
Causes an exception, which invokes a kernel handler

Passes a parameter determining the system routine to call
Saves caller state (PC, regs, mode) so it can be restored

Why save mode?
Returning from system call restores this state

39

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to kernel
mode, save

state

Trap handler

Find read
handler

Restore state,
return to user
level, resume

execution

40

System Call Questions
There are hundreds of syscalls. How do we let
the kernel know which one we intend to invoke?

Before issuing int $0x80 or sysenter, set %eax/%rax
with the syscall number

System calls are like function calls, but how to
pass parameters?

Just like calling convention in syscalls, typically
passed through %ebx, %ecx, %edx, %esi, %edi,
%ebp

