Virtualization

Credit: https://gcallah.github.io/OperatingSystems/index.html

Types of Virtualization

Virtualize a computer/hardware
— System Virtual Machine (e.g., VMWare, Xen, KVM)

Virtualize an OS
— Containers (e.g., LXC, Docker)

Virtualize a process:
— WINE, user-mode QEMU

Virtualize a language environment
— JVM, JavaScript Engine, etc.

Requirements for Virtualization

* Requirements:

Hardware (CPU, Memory, NIC, Disk) — Safety
Hypervisor (Hyper-V, Xen, ESX Server)

— Fidelity/Transparency
— Efficiency

* Possible Approaches

— Interpreter: safe and faithful, but
inefficient

— Trap-and-emulate: efficient and faithful,
safe?
* Popek and Goldberg theorems

— Sensitive instructions must be a subset of
privileged instructions

Type 1 and Type 2 Hypervisors

Excel Word Mplayer Emacs

Guest OS process

OOé

(CPU, disk, network, interrupts, etc.)

Control (e.g., Windows)
: D '
Windows omain Type 2 hypervisor
Type 1 hypervisor . : -
Hardware Hardware

Host OS
process

(CPU, disk, network, interrupts, etc.)

Virtualizaton method Type 1 hypervisor Type 2 hypervisor
Virtualization without HW support | ESX Server 1.0 VMware Workstation 1
Paravirtualization Xen 1.0

Virtualization with HW support

vSphere, Xen, Hyper-V | VMware Fusion, KVM, Parallels

Process virtualization

Wine

CPU Virtualization

 Paravirtualization:

— Patch the sensitive instructions in the guest kernel to
make hypercalls

— E.g., Xen 1.0

* Dynamic Binary Translation:

— At runtime, translate the sensitive instruction in the
guest kernel

* Architectural Support:

— Change the architecture, such that sensitive
instructions are protected

— E.g., Intel VT

Case Study: |IA-32 Virtualization w/ VT-x

o VT-x is a new operating mode for IA-32 processors
Part of Intel® Virtualization Technology (VT)
Will be launched in Intel desktop CPUs in second half of 2005

o Operating mode enabled with VMXON / VMXOFF

o VT-x provides two new forms of operation:
Root Operation: Fully privileged, intended for VMM
Non-root Operation: Not fully privileged, intended for guest OS

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

25

Case Study: |A-32 Virtualization w/ VT-x

Non-Root

Operation

“Standard” Root
— P
|A-32 VMXON Qperation

Apps ' Apps '
oS oS
VMM

Guest software runs at
intended privilege level

Ring 37 (no ring deprivileging)

Ring O

_________ “Standard”
VMXOFF IA-32

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 26

VT-x Transitions: VM Entry and VM EXxit

o VM Entry

- VMM-to-guest transition
Initiated by new instructions: VMLAUNCH or VMRESUME
Enters non-root operation, loading guest state
Establishes key guest state in a single, atomic operation

a VM Exit Virtual Machines (VMs)
Guest-to-VMM transition

Caused by virtualization events Ring 3 | | Apps IJ Apps lJ

Enters root operation oo
Saves guest state Ring 0 0S 0S
Load VMM state

VM Entry VM Exit

Root VMRESUME
Operation VMM

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 27

VT-x Config Flexibility with the VMCS

0 VM Control Structure (VMCS) specifies CPU behavior

Holds guest state loaded / stored on VM entry / exit
- Accessed through a VMREAD /| VMWRITE interface

0 Configuration of VMCS controls guest OS behavior
- VMM programs VMCS to cause VM exits on desired events

0 VM exits possible on:
Privileged State: CRn, DRn, MSRs
Sensitive Ops: CPUID, HLT, etc.
Paging events: #PF, INVLPG
Interrupts and Exceptions

0 Other optimizations:
Bitmaps, shadow registers, etc.

Ring 3 Apps I}
Ring O oS n
Twmesit ||| vMEntry
VMREAD
vmwriTE——g | VMCS | (VMM)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 28

The VM Control Structure (VMCS)

VM-execution controls

Determines what operations

CRO, CR3, CR4, Exceptions, IO

cause VM exits Ports, Interrupts, Pin Events, efc.
Gt Saved on VM exits EIP, ESP, EFLAGS, IDTR, Segment
Reloaded on VM entry Regs, Exitinfo, efc.
Host -state are a Loaded on VM exits CR3, EIP setto monitor entry point,

EFLAGS hardcoded, efc.

VM -exit controls

Determines which state to
save, load, how to fransition

Example: MSR save -load list

VM-entry controls

Determines which state to
load, how to transition

Including injecting events
(interrupts, exceptions) on entry

o Each virtual CPU has a separate VMCS
For MP guest OS: separate VMCS for each “virtual CPU”

0 One VMCS per logical CPU is active at any given time

VMPTRLD instruction used to switch from one VMCS to another

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

29

Example VM-exit Causes

0 Sensitive Instructions
CPUID — Reports processor capabilities
RDMSR, WRMSR — Read and write “Model-Specific Registers”
INVLPG - Invalidate TLB Entry
RDPMC, RDTSC — Read Perf Mon or Time-Stamp Counters
HLT, MWAIT, PAUSE - Indicate Guest OS Inactivity
VMCALL — New Instruction for Explicit Call to VMM

0 Accesses to Sensitive State
MOV DRx — Accesses to Debug Registers
MOV CRx — Accesses to Control Registers
Task Switch — Accesses to CR3

0 Exceptions and Asynchronous Events
Page Faults, Debug Exceptions, Interrupts, NMls, etc.

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

30

Some Example VM-EXxit Optimizations

0 VT-x provides various optimizations to minimize
frequency of VM exits:

0 Shadow Registers and Masks

Reads from CRO and CR4 are satisfied from shadow registers
established by the VMM

- VM exits can be conditional based on the specific bits modified
on a CR write (via a mask)

o Execution-Control Bitmaps

- VM exits can be selectively controlled via bitmaps
(e.g., for exceptions, 10-port accesses)

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 31

System Virtualization Case Studies
Memory Virtualization

Mem Virtualization: General Principles

VM, VM,
CR3 o Fpr 74 CR3 o Fpr 0
] L]

T [0 pT | L]

Guest OS L Guest OS L

Vi E_'_'_'_'_'_&_'_'_'_‘_'_f:Méfﬁi&@fi@éi@éﬁéﬁj_'_'_‘!_‘f_'_'_'_‘_'_‘_'.i

Host

Hardware IE2 Memnory

0 Guest OS expects to control address translation
Allocates memory, page tables, manages TLB consistency, etc.

o But, VMM must have ultimate control over phys mem
Must map guest-physical address space to host-physical space

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 36

A Case Study: |A-32 Address Translation

CR3
PD _—7| PT

Paging-related
Control Registers

[

TLB D :
R —— PDE PTE -

uss —| PE, PG, WP

VPN | PFN | Access PT L—> F PAE, PSE
\\ Hardware sets : Faing
A 1D Bits ' -CR2
\\ PTE — - Address
PFN oAl |uslrw| e |

o 1A-32 defines a hierarchical page-table structure
Defines linear-to-physical address translation
After page-table walk, page-table Entries (PTEs) are cached in a hardware TLB

o [|A-32 address translation configured via control registers (CR3, etc.)
o Invalidation of PTEs signaled by OS via INVLPG instruction

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 37

Virtualizing Page Tables: Some Options

0 Option 1: Protect access to guest-OS page tables (PTs)
Use paging protections or binary translation to detect changes
Upon write access, substitute remapped phys address in PTE

- Also need VM exit on page-table reads (to report original PTE
value to guest OS)

0 Option 2: Make a shadow copy of page tables
Guest OS freely changes its page tables
- VM exit occurs whenever CR3 changes
- VMM copies contents of guest page tables to active page tables
Copy operation is analogous to a TLB refill, hence: “Virtual TLB”

0 Details of option 2 follow
. As illustration of the use of VT-x...

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 38

Virtual TLB: Basic ldea |V cuestPage ae
LRY PD pr [
g
pT [L]
Guest 08 —0
A
y 4
po T T T T T T s Em e m e m e l______---------"i
b EVTLB . i
W
S PD pr | L]
TLB Active >
Page Table PT]

0 VTLB = Processor TLB + Active Page Table

VMM initializes an empty VTLB and starts guest execution
When guest accesses memory, #PF occurs, and is sent to VMM
VMM copies needed translation (VTLB refill) and resumes guest

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

39

Virtual TLB: VT-x Setup

o VTLB algorithm programs VMX to cause VM exits on:
- Any writes to CR3 and relevant writes to CR0 and CR4

VMCS

Set INVLPG exifing = 1
MOV CR3 and task switch always cause exits

VM-execution Controls

L~

Exception bitmap

Bitmap set to cause exits on #PF exceptions

CRO guest/ host mask

CR4 guest/ host mask

—

Guest / host masks for both CR0O and CR4 set
to protect paging-related bits.

CRO read shadow

CR4 read shadow

—

Read shadow's for CRO and CR4 set to follow
guestvalues (may differ from actual values).

- Any page-fault (#PF) exceptions
- Any executions of INVLPG

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

40

Virtual TLB: Actions on CR3 Write

CR3

write to CR3 7

Guest OS Pt
!
causes VM exit I

Guest 1 A

Host 1

‘f ;o [ews PD
Put new CR3 value
into guest area of VMCS PDE
and resume guest with
VMRESUME

oool‘U

0 CR3 write implies a TLB flush and page-table change
VMM notes new CR3 value (used later to walk guest PT)
VMM allocates a new PD page, with all invalid entries
VMM sets actual CPU CR3 register to point to the new PD page

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 41

Virtual TLB: Actions on a Page Fault

CR3

PD

August 2005

Guestpage , 7, (P\
faultcauses < TE
a VM exit I
I
Guest)
L |
1
Host ! ,’
I 1 CR3
v PD

Page fault reflected
back to guest using
‘vector-on-entry” with
VMRESUME

0 VMM examines guest PT using faulting addr
If relevant PTE or PDE is invalid (P=0), then the #PF must be

reflected to the guest OS.

VMM configures VMCS for a “#PF vector-on-entry”
Then resumes guest execution with a VMRESUME

PDE

| 0

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

42

Virtual TLB: Actions on a Page Fault (2)

User-level read access...
CR3 PD PT F
1E%utlatstpage ,," P G A DUISRWP
ault causes ! PDE 1 PTE | O] OO 1| 1]1
a VM exit I | ofojol 1] g
|
I}
Guest ; A
7 1
Host I} / I &
=
!
v CR3 PD v PT v \ 2 :&
P G A DUSRWP \ 4
PDE |1 PiE o] [[1] [1|~fF

0 If guest page table indicates sufficient access, then...

VMM allocates PT and copies guest PTE to the active PT
PFN of active PTE remapped to new value as per VMM policy

Other active PTE bits set as in guest PTE (e.g., P, G, U/S)
43

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

August 2005

Virtual TLB: Actions on INVLPG

i PD PT — 7 F
INVLPG causes P G A DUSRMWP Z
VM exit POE_ |1 PE Jofofofofof of~—yF
Y 7
”
Guest \‘ Invalidation of guest PT doesn’t cause VM exit <
Host ‘\
v CR3 PD PT — | F
P G A DUSRWP :
PDE |1 PE | o[ofof of of o~y

0 Guest OS permitted to freely modify its page tables
Implies guest PTs and active PTs can become inconsistent
This is okay! (same as inconsistencies between PTs and TLB)
If guest reduces access, signals via INVLPG, causing a VM exit
VMM invalidates corresponding PTE in the active PT

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 44

Extended Page Tables (EPT)

e AVMM must protect host physical memory

— Multiple guest operating systems share the
same host physical memory

— VMM typically implements protections through
“page-table shadowing” in software

 Page-table shadowing accounts for a large portion of
virtualization overheads

— VM exits due to: #PF INVLPG, MOV CR3

Goal of EPT is to reduce these overheads

What Is EPT?

CR3 EPT Base Pointer (EPTP)

L

Guest IA-32 | Guest Physical Address

Extended Host Physical Address

\ 4

Guest Linear Address >| Page Page
Tables Tables

* Extended Page Table
* A new page-table structure, under the control of the VMM
— Defines mapping between guest- and host-physical addresses
— EPT base pointer (new VMCS field) points to the EPT page tables
— EPT (optionally) activated on VM entry, deactivated on VM exit
* QGuest has full control over its own IA-32 page tables
— No VM exits due to guest page faults, INVLPG, or CR3 changes

System Virtualization Case Studies
10-Device Virtualization

10 Virtualization: General Principles

Hypervisor Architecture Hosted Architecture
VM0 VM1 VMn User-level VMM VI\/In
VM,
Guest OS Guest OS Guest OS S
and Apps and Apps and Apps User
Apps odels Guest OS
and Apps
Hypervisor Host O
Device Models (Top) H Device i 1
Device Drivers (Bottom) Drivers ¢ " E
o T Ly 2
~
> ~
S ’
o Virtual device model presents ., J
interface to guest operating system Virtual Device
o Physical device driver programs Intertace and Model
and responds to actual device Physical Device
hardware Interface and Driver

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation

Virtual and Physical Device Interfaces

VM,

Guest OS
and Apps

Guest device driver programs
“virtual device” interface:
» Device Configuration Accesses

* |O-port Accesses
 Memory -mapped Device Registers

Virtual Device

Interface and Model

* Translation of DMA addresses

Virtual device model proxies
accesses to physical device driver:
+ Possible franslation of commands

VM,

Guest OS
and Apps

Virtual device model proxies

device activity back to guest OS:
+ Copying (or translation) of DMA buffers
* Injection of “virtual interrupts”

Virtual Device
Interface and Model

Physical Device
Interface and Driver

Device driver programs actual\

physical IO device:

* Device configuration

Physical Device

Interface and Driver

* |O-port and MMIO accesses [TTTTT

Physical Device
System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 48

August 2005

//' Physical device responds to commands:

+ DMA transactions o host phy sical memory

« Physical device inferrupts

Case Study: 10 Virtualization with VT-x

VM,
VMCS
Guest OS Al
and Apps Llles eV|c.e rllver el ; Bits setas shown previously to
“virtual device” interface: VM-execution Controls implement VTLB algorithm
+ Device Configuraion Accesses
* 10-port Accesses _ Various Paging Controls
« Memory -mapped Device Registers ;
|O-port bitmap Y
Bitmap set to cause exits on
Virtual Device specific 10 ports as needed
Interface and Model |

0 VT-x provides and 10-port bitmap execution control

Enables VMM to intercept any 10-port accesses for bus
configuration or 10-device control

0 VT-x provides paging controls to intercept MMIO

VTLB-like algorithm can enforce VM exits on physical pages
with memory-mapped 10 (MMIO) registers

August 2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 49

10 Virtualization with VT-x (cont.)

VMCS

VM,

VM-execution Confrols

Interruptwindow exiting

{5 e 5 ecoet g e
P P and Apps

VM-entry Confrols

Interruptinformation field

|

Virtual device model proxies

device activity back to guest OS:
+ Copying (or translation) of DMA buffers
* Injection of “virtual interrupts”

Used fo inject a virtual interrupt
when guest is ready

B Virtual Device
Interface and Model

0 VT-x Interrupt-window exiting
Guest OS may not be interruptible (e.qg., critical section)

Interrupt-window exiting allows guest OS to run until it has
enabled interrupts (via EFLAGS.IF)

0 VT-x Event Injection on VM entry
Enables VMM to vector interrupt through guest IDT on VM entry

August 2005

System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 50

|O Paravirtualization

Guest operating system Guest operating system
Para-drivers
Traps Interfaces
Hypervisor - : Hypervisor . ,
(Full virtualization) | 2°*'°® SMa10n (Full virtualization) | °¥°® emuiation

Hardware Hardware

