UNIVER SITY OF CALIF ORNIA

RIVERSID

Google File System

CS 202

From paper by Ghemawat, Gobioff & Leung

The Need

> Component failures normal
Due to clustered computing

» Flles are huge
By traditional standards (many TB)

> Most mutations are appends.
Not random access overwrite

» Co-Designing apps & file system

> Typical: 1000 nodes & 300 TB

R

Desiderata

>
>
>

>

Must monitor & recover from comp failures
Modest number of large files

Workload

Large streaming reads + small random reads

Many large sequential writes
Random access overwrites don’t need to be efficient

Need semantics for concurrent appends

High sustained bandwidth
More important than low latency

R

Interface

> Familiar
Create, delete, open, close, read, write

> Novel
Snapshot
Low cost

Record append
Atomicity with multiple concurrent writes

R

Architecture

%

/7767‘00/
Qra Master
0/7 /}/
Client PN
MC(HY { Clien’r :II
Client <ij
data only
O
O
O
Client

Chunk
Server

Chunk
Server

Chunk
Server

R

} Many

Architecture

» Store all files

In fixed-size chucks
64 MB
64 bit unique handle

> Triple redundancy

Chunk
Server

Chunk
Server

Chunk
Server

R

Architecture

Master

+ Stores all metadata
- Namespace
- Access-control information
- Chunk locations
- 'Lease’ management
eartbeats

aving one master = global knowledge
- Allows better placement / replication
- Simplifies design

Architecture K

Client

* GFS code implements API
Client » Cache only metadata

Client

Client

Send request to master

Using fixed chunk size, translate filename &
byte offset to chunk index.

=

Application | . ~ far S
Pl (file name, chunk index) GFS master - /foo/bar
GFS client | File namespace chunk 2ef0
(chunk handle, /
chunk locations) ’
. [
Instructions to chunkserver ! l
Chunkserver state
(chunk handle, byte range) Y
— GFES chunkserver GFS chunkserver
chunk data . .
Linux file system Linux file system
Legend:

mmm)p Data messages

— Control messages

K

Replies with chunk handle & location of chunksenrye
replicas (including which is ‘primary’)

R

/

—

Application '
Pl (file name. chunk index)

~/

GFS master

GFS client |

File namespace f,:

(chunk handle.
chunk locations)

!
[
{
I

L4
-

= /foo/bar

chunk 2ef0

(chunk handle, byte range)

)

; i
Instructions to chunkserver
Chunkserver state

GFS chunkserver

chunk data

Linux file system

GFS chunkserver

Linux file system

Legend:

mmm)p Data messages

— Control messages

99 -

99

Cache info
using filename & chunk index as key

P

Application | . ~ far S

Pl (file name, chunk index) GFS master - /foo/bar

GFS client | File namespace chunk 2ef0
(chunk handle, /
chunk locations)
. 4

Instructions to chunkserver

Chunkserver state
(chunk handle, byte range) Y

GFS chunkserver

Linux file system

99 -

chunk data

Legend:

mmm)p Data messages

— Control messages

GFS chunkserver

Linux file system

99

K

Application '
Pl (file name. chunk index)

GFS client |

(chunk handle.
chunk locations)

(chunk handle, byte range)

GFS master

File namespace f,:

!
[
{
I

L4
-

= /foo/bar

chunk 2ef0

)

; i
Instructions to chunkserver
Chunkserver state

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

90 —

99 -

Request data from nearest chunkserver

“chunkhandle & index into chunk"

K

No need to talk more

About this 64MB chunk
Until cached info expires or file reopened

Application

(file name. chunk index)

GFS client |

(chunk handle.
chunk locations)

GFS master

File namespace f;

!
’
{
.

-’
-

= /foo/bar

chunk 2ef0

(chunk handle, byte range)

Y

; i
Instructions to chunkserver
Chunkserver state

GFS chunkserver

chunk data

Linux file system

GFS chunkserver

Linux file system

90 ~

99 -

K

Often initial request asks about
Sequence of chunks

Application . - far -
Pl (file name, chunk index) GFS master - [foo/bar

GEFS client | File namespace chunk 2ef0
(chunk handle., /
chunk locations) ’

! i
Instructions to chunkserver J
Chunkserver state
(chunk handle. byte range) Y

GFS chunkserver

chunk data

Linux file system

GFS chunkserver

Linux file system

90 ~

99 -

K

Metadata

» Master stores three types
File & chunk namespaces
Mapping from files = chunks
Location of chunk replicas

» Stored In memory
» Kept persistent thru logging

R

Consistency Model

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
successes but undefined
Failure inconsistent

Consistent = all clients see same data

Consistency Model

Write Record Append
Serial defined defined
success interspersed with
Concurrent pistent tnconsistent
successes undefined
Failure inconsistent

Defined = consistent + clients see full effect

of mutation
Key: all replicas must process chunk-mutation
requests in same order

Consistency Model

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
successes but undefined
Failure inconsistent

Different clients may see different data

Implications

> Apps must rely on appends, not overwrites

» Must write records that

Self-validate
Self-identify

» Typical uses

Single writer writes file from beginning to end, then
renames file (or checkpoints along way)
Many writers concurrently append

At-least-once semantics ok

Reader deal with padding & duplicates

R

Leases & Mutation Order

> Objective
Ensure data consistent & defined
Minimize load on master

» Master grants ‘lease’ to one replica
Called ‘primary’ chunkserver

> Primary serializes all mutation requests
Communicates order to replicas

R

Write Control & Dataflow

step 1 _
Client | Master
2

la
Secondary |a—
Replica A

pl' |
Primary <
Replica -— i

l Legend:

§ ——= Control

Secondary) D),
ReplicaB f=——

R

Atomic Appends R

» As In last slide, but...

> Primary also checks to see If append spills
over into new chunk

If so, pads old chunk to full extent
Tells secondary chunk-servers to do the same
Tells client to try append again on next chunk

» Usually works because
max(append-size) < ¥4 chunk-size [API rule]
(meanwhile other clients may be appending)

Other Issues

» Fast snapshot

» Master operation
Namespace management & locking
Replica placement & rebalancing
Garbage collection (deleted / stale files)
Detecting stale replicas

R

Master Replication X

» Master log & checkpoints replicated

» Outside monitor watches master livelihood
Starts new master process as needed

» Shadow masters
Provide read-access when primary is down
Lag state of true master

Read Performance

Network Limit
100 -
%
=
5
k- 504 Aggregate read rate
3 _
o———m——7———7—
0 5 10 15

Number of clients N

K

Write Performance

60 -

e
(s
|

Write rate (MB/s)

Network limait

Aggregate write rate

Number of clients N

K

Record-Append Performance

Network limit

|—I.
-
1 I 1

L
I

Append rate (MB/s)

Aggregate append rate

l:') ')) |)))) |)))) I)
0 3 10 15

Number of clients N

K

