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The Need

> Component failures normal
Due to clustered computing

» Flles are huge
By traditional standards (many TB)

> Most mutations are appends.
Not random access overwrite

» Co-Designing apps & file system

> Typical: 1000 nodes & 300 TB

R



Desiderata

>
>
>

>

Must monitor & recover from comp failures
Modest number of large files

Workload

Large streaming reads + small random reads

Many large sequential writes
Random access overwrites don’t need to be efficient

Need semantics for concurrent appends

High sustained bandwidth
More important than low latency
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Interface

> Familiar
Create, delete, open, close, read, write

> Novel
Snapshot
Low cost

Record append
Atomicity with multiple concurrent writes
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Architecture
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Architecture

» Store all files

In fixed-size chucks
64 MB
64 bit unique handle

> Triple redundancy
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Architecture

Master

+ Stores all metadata
- Namespace
- Access-control information
- Chunk locations
- 'Lease’ management
eartbeats

aving one master = global knowledge
- Allows better placement / replication
- Simplifies design




Architecture K

Client

* GFS code implements API
Client » Cache only metadata

Client

Client




Send request to master

Using fixed chunk size, translate filename &
byte offset to chunk index.
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Replies with chunk handle & location of chunksenrye
replicas (including which is ‘primary’)
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Cache info
using filename & chunk index as key
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No need to talk more

About this 64MB chunk
Until cached info expires or file reopened
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Often initial request asks about
Sequence of chunks
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Metadata

» Master stores three types
File & chunk namespaces
Mapping from files = chunks
Location of chunk replicas

» Stored In memory
» Kept persistent thru logging
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Consistency Model

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
successes but undefined
Failure inconsistent

Consistent = all clients see same data




Consistency Model

Write Record Append
Serial defined defined
success interspersed with
Concurrent pistent tnconsistent
successes undefined
Failure inconsistent

Defined = consistent + clients see full effect

of mutation
Key: all replicas must process chunk-mutation
requests in same order




Consistency Model

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
successes but undefined
Failure inconsistent

Different clients may see different data




Implications

> Apps must rely on appends, not overwrites

» Must write records that

Self-validate
Self-identify

» Typical uses

Single writer writes file from beginning to end, then
renames file (or checkpoints along way)
Many writers concurrently append

At-least-once semantics ok

Reader deal with padding & duplicates
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Leases & Mutation Order

> Objective
Ensure data consistent & defined
Minimize load on master

» Master grants ‘lease’ to one replica
Called ‘primary’ chunkserver

> Primary serializes all mutation requests
Communicates order to replicas
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Write Control & Dataflow
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Atomic Appends R

» As In last slide, but...

> Primary also checks to see If append spills
over into new chunk

If so, pads old chunk to full extent
Tells secondary chunk-servers to do the same
Tells client to try append again on next chunk

» Usually works because
max(append-size) < ¥4 chunk-size [API rule]
(meanwhile other clients may be appending)



Other Issues

» Fast snapshot

» Master operation
Namespace management & locking
Replica placement & rebalancing
Garbage collection (deleted / stale files)
Detecting stale replicas
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Master Replication X

» Master log & checkpoints replicated

» Outside monitor watches master livelihood
Starts new master process as needed

» Shadow masters
Provide read-access when primary is down
Lag state of true master



Read Performance
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Write Performance
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Record-Append Performance
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