
Distributed Filesystems

Continued

Consequences of statelessness
Read and writes must specify their start offset

Server does not keep track of current position in
the file
User still use conventional UNIX reads and writes

Open system call translates into several
lookup calls to server
No NFS equivalent to UNIX close system call

Important pieces of protocol

From protocol to distributed file system
Client side translates user requests to protocol
messages to implement the request remotely
Example:

The lookup call (I)
Returns a file handle instead of a file descriptor

File handle specifies unique location of file
Volume identifier, inode number and generation number

lookup(dirfh, name) returns (fh, attr)
Returns file handle fh and attributes of named file in directory
dirfh
Fails if client has no right to access directory dirfh

The lookup call (II)
One single open call such as
fd = open(“/usr/joe/6360/list.txt”)

will be result in several calls to lookup

lookup(rootfh, “usr”) returns (fh0, attr)
lookup(fh0, “joe”) returns (fh1, attr)
lookup(fh1, “6360”) returns (fh2, attr)
lookup(fh2, “list.txt”) returns (fh, attr)

Why all these steps?
Any of components of /usr/joe/6360/list.txt
could be a mount point

Mount points are client dependent and mount information is kept above the
lookup() level

Server side (I)
Server implements a write-through policy

Required by statelessness
Any blocks modified by a write request (including
i-nodes and indirect blocks) must be written back
to disk before the call completes

Server side (II)
File handle consists of

Filesystem id identifying disk partition
I-node number identifying file within partition
Generation number changed every time
i-node is reused to store a new file

Server will store
Filesystem id in filesystem superblock
I-node generation number in i-node

Client side (I)
Provides transparent interface to NFS
Mapping between remote file names and remote file
addresses is done a server boot time through remote
mount

Extension of UNIX mounts
Specified in a mount table

Makes a remote subtree appear part of a local subtree

Remote mount

Client tree

bin

usr

/
Server subtree

rmount

After rmount, root of server subtree
can be accessed as /usr

Client side (II)
Provides transparent access to

NFS
Other file systems (including UNIX FFS)

New virtual filesystem interface supports
VFS calls, which operate on whole file system
VNODE calls, which operate on individual files

Treats all files in the same fashion

Client side (III)

UNIX system calls

VNODE/VFS

Other FS NFS UNIX FS

User interface is
unchanged

RPC/XDR disk

LAN

Common interface

More examples

Continued

Handling server Failures
Failure types:

Recovery in Stateless NFS
If the server fails and restarts, there is no need
to rebuild in-memory state on the server.

Client reestablishes contact (e.g., TCP connection).
Client retransmits pending requests.

Classical NFS uses a connectionless transport
(UDP).

Server failure is transparent to the client; no
connection to break or reestablish.

A crashed server is indistinguishable from a slow server.
Sun/ONC RPC masks network errors by
retransmitting a request after an adaptive timeout.

A dropped packet is indistinguishable from a crashed server.

Drawbacks of a Stateless Service

The stateless nature of classical NFS has compelling
design advantages (simplicity), but also some key
drawbacks:

Recovery-by-retransmission constrains the server interface.
ONC RPC/UDP has execute-at-least-once semantics (“send and
pray”), which compromises performance and correctness.

Update operations are disk-limited.
Updates must commit synchronously at the server.

NFS cannot (quite) preserve local single-copy semantics.
Files may be removed while they are open on the client.
Server cannot help in client cache consistency.

Let’s explore these problems and their solutions...

Problem 1: Retransmissions and Idempotency

For a connectionless RPC transport,
retransmissions can saturate an overloaded
server.

Clients “kick ‘em while they’re down”, causing steep
hockey stick.

Execute-at-least-once constrains the server
interface.

Service operations should/must be idempotent.
Multiple executions should/must have the same effect.

Idempotent operations cannot capture the full
semantics we expect from our file system.

remove, append-mode writes, exclusive create

Solutions to the Retransmission
Problem

1. Hope for the best and smooth over non-
idempotent requests.

E.g., map ENOENT and EEXIST to ESUCCESS.

2. Use TCP or some other transport protocol that
produces reliable, in-order delivery.

higher overhead...and we still need sessions.

3. Implement an execute-at-most once RPC
transport.

TCP-like features (sequence numbers)...and sessions.

4. Keep a retransmission cache on the server
[Juszczak90].

Remember the most recent request IDs and their results, and
just resend the result....does this violate statelessness?
DAFS persistent session cache.

Problem 2: Synchronous Writes
Stateless NFS servers must commit each
operation to stable storage before responding to
the client.

Interferes with FS optimizations, e.g., clustering, LFS,
and disk write ordering (seek scheduling).

Damages bandwidth and scalability.
Imposes disk access latency for each request.

Not so bad for a logged write; much worse for a complex
operation like an FFS file write.

The synchronous update problem occurs for any
storage service with reliable update (commit).

Speeding Up Synchronous NFS Writes
Interesting solutions to the synchronous write
problem, used in high-performance NFS
servers:

Delay the response until convenient for the server.
E.g., NFS write-gathering optimizations for clustered writes
(similar to group commit in databases).
Relies on write-behind from NFS I/O daemons (iods).

Throw hardware at it: non-volatile memory (NVRAM)
Battery-backed RAM or UPS (uninterruptible power supply).
Use as an operation log (Network Appliance WAFL)...
...or as a non-volatile disk write buffer (Legato).

Replicate server and buffer in memory (e.g., MIT
Harp).

NFS V3 Asynchronous Writes
NFS V3 sidesteps the synchronous write
problem by adding a new asynchronous write
operation.

Server may reply to client as soon as it accepts the
write, before executing/committing it.

If the server fails, it may discard any subset of the accepted
but uncommitted writes.

Client holds asynchronously written data in its cache,
and reissues the writes if the server fails and restarts.

When is it safe for the client to discard its buffered writes?
How can the client tell if the server has failed?

NFS V3 Commit
NFS V3 adds a new commit operation to go with
async-write.

Client may issue a commit for a file byte range at any
time.
Server must execute all covered uncommitted writes
before replying to the commit.
When the client receives the reply, it may safely
discard any buffered writes covered by the commit.
Server returns a verifier with every reply to an async
write or commit request.

The verifier is just an integer that is guaranteed to change if
the server restarts, and to never change back.

What if the client crashes?

File consistency/coherence issues
Cannot build an efficient network file system without client
caching

Cannot send each and every read or write to the server

Client caching introduces coherence issues

Conventional timeshared UNIX semantics guarantee that
All writes are executed in strict sequential fashion
Their effect is immediately visible to all other processes accessing
the file

Interleaving of writes coming from different processes is left
to the kernel discretion

Example

Server

x’ xx’’

A B

Inconsistent updates
X' and X'' to file X

Example
Consider a one-block file X that is concurrently modified
by two workstations
If file is cached at both workstations

A will not see changes made by B
B will not see changes made by A

We will have
Inconsistent updates
Non respect of UNIX semantics

UNIX file access semantics (II)
UNIX file access semantics result from the use of a
single I/O buffer containing all cached blocks and i-
nodes
Server caching is not a problem

Disabling client caching is not an option:
Would be too slow
Would overload the file server

NFS solution (I)
Stateless server does not know how many users are
accessing a given file

Clients do not know either

Clients must
Frequently send their modified blocks to the server
Frequently ask the server to revalidate the blocks they have
in their cache

NFS solution (II)

Server

x’ x

A B

Better to propagate my updates
and refresh my cache

??

Implementation
VNODE interface only made the kernel 2% slower
Few of the UNIX FS were modified
MOUNT was first included into the NFS protocol

Later broken into a separate user-level RPC process

Problem 3: File Cache Consistency
Problem: Concurrent write sharing of files.

Contrast with read sharing or sequential write sharing.

Solutions:
Timestamp invalidation (NFS).

Timestamp each cache entry, and periodically query the
server: “has this file changed since time t?”; invalidate cache if
stale.

Callback invalidation (AFS, Sprite, Spritely NFS).
Request notification (callback) from the server if the file
changes; invalidate cache and/or disable caching on callback.

Leases (NQ-NFS) [Gray&Cheriton89,Macklem93,NFS V4]
Later: distributed shared memory

File Cache Example: NQ-NFS Leases
In NQ-NFS, a client obtains a lease on the file
that permits the client’s desired read/write
activity.

“A lease is a ticket permitting an activity; the lease is valid until
some expiration time.”

A read-caching lease allows the client to cache clean
data.
Guarantee: no other client is modifying the file.

A write-caching lease allows the client to buffer
modified data for the file.
Guarantee: no other client has the file cached.
Allows delayed writes: client may delay issuing writes to
improve write performance (i.e., client has a writeback cache).

Tuning (I)
First version of NFS was much slower than Sun
Network Disk (ND)
First improvement

Added client buffer cache
Increased the size of UDP packets from 2048 to 9000 bytes

Next improvement reduced the amount of buffer to
buffer copying in NFS and RPC (bcopy)

Tuning (II)

Third improvement introduced a client-side attribute
cache

Cache is updated every time new attributes arrive from
the server
Cached attributes are discarded after

3 seconds for file attributes
30 seconds for directory attributes

These three improvements cut benchmark run time
by 50%

Tuning (III)

These three improvements
had the biggest impact on
NFS performance

Conclusions
NFS succeeded because it was

Robust
Reasonably efficient
Tuned to the needs of diskless workstations

In addition, NFS was able to evolve and
incorporate concepts such as close-to-open
consistency

Discussion
Throughput
Latency
Scalability
Crash Recovery
Fault Tolerance

41

AFS: Andrew File System
Main Motivation: Scalability!!!

Basic idea: whole-file caching
Fetch the whole file for the first time
Update on close

42

AFS version 1
When open a file for the first time, cache it
Next time, TestAuth to determine if the file
has changed

Performance is poor. Why?
Path-traversal costs are too high
Too many TestAuth messages

43

AFS version 2
Solution

File identifier
Similar to file handle in NFS

A callback mechanism to reduce client/server
interactions

An analogy to polling vs. interrupts

44

45

46

AFS Crash Recovery
If a client crashes, it treats all cache contents
as suspect. Send TestAuth to the server.
If the server crashes, it asks all clients to
reconstruct the callback states

Discussion Again
Throughput
Latency
Scalability
Crash Recovery
Fault Tolerance

48

