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Consequences of statelessness
Read and writes must specify their start offset

Server does not keep track of current position in 
the file
User still use conventional UNIX reads and writes

Open system call translates into several
lookup calls to server
No NFS equivalent to UNIX close system call



Important pieces of protocol



From protocol to distributed file system
Client side translates user requests to protocol 
messages to implement the request remotely
Example:



The lookup call (I)
Returns a file handle instead of a file descriptor

File handle specifies unique location of file
Volume identifier, inode number and generation number

lookup(dirfh, name) returns (fh, attr)
Returns file handle fh and attributes of named file in directory 
dirfh
Fails if client has no right to access directory dirfh



The lookup call (II)
One single open call such as
fd = open(“/usr/joe/6360/list.txt”)

will be result in several calls to lookup

lookup(rootfh, “usr”) returns (fh0, attr)
lookup(fh0, “joe”) returns (fh1, attr)
lookup(fh1, “6360”) returns (fh2, attr)
lookup(fh2, “list.txt”) returns (fh, attr)

Why all these steps?
Any of components of /usr/joe/6360/list.txt
could be a mount point

Mount points are client dependent and mount information is kept above the 
lookup() level



Server side (I)
Server implements a write-through policy

Required by statelessness
Any blocks modified by a write request (including 
i-nodes and indirect blocks) must be written back 
to disk before the call completes



Server side (II)
File handle consists of

Filesystem id identifying disk partition
I-node number identifying file within partition
Generation number changed every time
i-node is reused to store a new file

Server will store
Filesystem id in filesystem superblock
I-node generation number in i-node



Client side (I)
Provides transparent interface to NFS
Mapping between remote file names and remote file 
addresses is done a server boot time through remote 
mount

Extension of UNIX mounts
Specified in a mount table

Makes a remote subtree appear part of a local subtree



Remote mount

Client tree

bin

usr

/
Server subtree

rmount

After rmount, root of server subtree 
can be accessed as /usr 



Client side (II)
Provides transparent access to

NFS 
Other file systems (including UNIX FFS) 

New virtual filesystem interface supports
VFS calls, which operate on whole file system
VNODE calls, which operate on individual files

Treats all files in the same fashion



Client side (III)

UNIX system calls

VNODE/VFS

Other FS NFS UNIX FS

User interface is 
unchanged

RPC/XDR disk

LAN

Common interface



More examples



Continued



Handling server Failures
Failure types:



Recovery in Stateless NFS
If the server fails and restarts, there is no need 
to rebuild in-memory state on the server.

Client reestablishes contact (e.g., TCP connection).
Client retransmits pending requests.

Classical NFS uses a connectionless transport 
(UDP).

Server failure is transparent to the client; no 
connection to break or reestablish.

A crashed server is indistinguishable from a slow server.
Sun/ONC RPC masks network errors by 
retransmitting a request after an adaptive timeout.

A dropped packet is indistinguishable from a crashed server.



Drawbacks of a Stateless Service

The stateless nature of classical NFS has compelling 
design advantages (simplicity), but also some key 
drawbacks:

Recovery-by-retransmission constrains the server interface.
ONC RPC/UDP has execute-at-least-once semantics (“send and 
pray”), which compromises performance and correctness.

Update operations are disk-limited.
Updates must commit synchronously at the server.

NFS cannot (quite) preserve local single-copy semantics.
Files may be removed while they are open on the client.
Server cannot help in client cache consistency.

Let’s explore these problems and their solutions...



Problem 1: Retransmissions and Idempotency

For a connectionless RPC transport, 
retransmissions can saturate an overloaded 
server.

Clients “kick ‘em while they’re down”, causing steep 
hockey stick.

Execute-at-least-once constrains the server 
interface.

Service operations should/must be idempotent.
Multiple executions should/must have the same effect.

Idempotent operations cannot capture the full 
semantics we expect from our file system.

remove, append-mode writes, exclusive create



Solutions to the Retransmission 
Problem

1. Hope for the best and smooth over non-
idempotent requests.

E.g., map ENOENT and EEXIST to ESUCCESS.

2. Use TCP or some other transport protocol that 
produces reliable, in-order delivery.

higher overhead...and we still need sessions.

3. Implement an execute-at-most once RPC 
transport.

TCP-like features (sequence numbers)...and sessions.  

4. Keep a retransmission cache on the server 
[Juszczak90].

Remember the most recent request IDs and their results, and 
just resend the result....does this violate statelessness?
DAFS persistent session cache.



Problem 2: Synchronous Writes
Stateless NFS servers must commit each 
operation to stable storage before responding to 
the client.

Interferes with FS optimizations, e.g., clustering, LFS, 
and disk write ordering (seek scheduling).

Damages bandwidth and scalability.
Imposes disk access latency for each request.

Not so bad for a logged write; much worse for a complex 
operation like an FFS file write. 

The synchronous update problem occurs for any 
storage service with reliable update (commit).



Speeding Up Synchronous NFS Writes
Interesting solutions to the synchronous write 
problem, used in high-performance NFS 
servers:

Delay the response until convenient for the server.
E.g., NFS write-gathering optimizations for clustered writes 
(similar to group commit in databases). 
Relies on write-behind from NFS I/O daemons (iods).

Throw hardware at it: non-volatile memory (NVRAM)
Battery-backed RAM or UPS (uninterruptible power supply).
Use as an operation log (Network Appliance WAFL)...
...or as a non-volatile disk write buffer (Legato).

Replicate server and buffer in memory (e.g., MIT 
Harp).



NFS V3 Asynchronous Writes
NFS V3 sidesteps the synchronous write 
problem by adding a new asynchronous write
operation.

Server may reply to client as soon as it accepts the 
write, before executing/committing it.

If the server fails, it may discard any subset of the accepted 
but uncommitted writes.

Client holds asynchronously written data in its cache, 
and reissues the writes if the server fails and restarts.

When is it safe for the client to discard its buffered writes?
How can the client tell if the server has failed?



NFS V3 Commit
NFS V3 adds a new commit operation to go with 
async-write.

Client may issue a commit for a file byte range at any 
time.
Server must execute all covered uncommitted writes 
before replying to the commit.
When the client receives the reply, it may safely 
discard any buffered writes covered by the commit.
Server returns a verifier with every reply to an async 
write or commit request.

The verifier is just an integer that is guaranteed to change if 
the server restarts, and to never change back.

What if the client crashes?



File consistency/coherence issues
Cannot build an efficient network file system without client 
caching

Cannot send each and every read or write to the server

Client caching introduces coherence issues

Conventional timeshared UNIX semantics guarantee that
All writes are executed in strict sequential fashion
Their effect is immediately visible to all other processes accessing 
the file

Interleaving of writes coming from different processes is left 
to the kernel discretion



Example

Server

x’ xx’’

A B

Inconsistent updates 
X' and X'' to file X



Example
Consider a one-block file X that is concurrently modified 
by two workstations
If file is cached at both workstations

A will not see changes made by B
B will not see changes made by A

We will have
Inconsistent updates
Non respect of UNIX semantics



UNIX file access semantics (II)
UNIX file access semantics result from the use of a 
single I/O buffer containing all cached blocks and i-
nodes
Server caching is not a problem

Disabling client caching is not an option:
Would be too slow
Would overload the file server



NFS solution (I)
Stateless server does not know how many users are 
accessing a given file

Clients do not know either

Clients must
Frequently send their modified blocks to the server
Frequently ask the server to revalidate the blocks they have 
in their cache



NFS solution (II)

Server

x’ x

A B

Better to propagate my updates 
and refresh my cache

??



Implementation
VNODE interface only made the kernel 2% slower
Few of the UNIX FS were modified
MOUNT was first included into the NFS protocol

Later broken into a separate user-level RPC process



Problem 3: File Cache Consistency
Problem: Concurrent write sharing of files.

Contrast with read sharing or sequential write sharing.

Solutions:
Timestamp invalidation (NFS).

Timestamp each cache entry, and periodically query the 
server: “has this file changed since time t?”; invalidate cache if 
stale.

Callback invalidation (AFS, Sprite, Spritely NFS).
Request notification (callback) from the server if the file 
changes; invalidate cache and/or disable caching on callback.

Leases (NQ-NFS) [Gray&Cheriton89,Macklem93,NFS V4]
Later: distributed shared memory



File Cache Example: NQ-NFS Leases
In NQ-NFS, a client obtains a lease on the file 
that permits the client’s desired read/write 
activity.

“A lease is a ticket permitting an activity; the lease is valid until 
some expiration time.”

A read-caching lease allows the client to cache clean 
data.
Guarantee: no other client is modifying the file.

A write-caching lease allows the client to buffer 
modified data for the file.
Guarantee: no other client has the file cached.
Allows delayed writes: client may delay issuing writes to 
improve write performance (i.e., client has a writeback cache).



Tuning (I)
First version of NFS was much slower than Sun 
Network Disk (ND)
First improvement

Added client buffer cache 
Increased the size of UDP packets from 2048 to 9000 bytes

Next improvement reduced the amount of buffer to 
buffer copying in NFS and RPC (bcopy)



Tuning (II)

Third improvement introduced a client-side attribute 
cache

Cache is updated every time new attributes arrive from 
the server
Cached attributes are discarded after

3 seconds for file attributes
30 seconds for directory attributes

These three improvements cut benchmark run time 
by 50%



Tuning (III)

These three improvements
had the biggest impact on
NFS performance



Conclusions
NFS succeeded because it was

Robust
Reasonably efficient
Tuned to the needs of diskless workstations

In addition, NFS was able to evolve and 
incorporate concepts such as close-to-open 
consistency



Discussion
Throughput
Latency
Scalability
Crash Recovery
Fault Tolerance
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AFS: Andrew File System
Main Motivation: Scalability!!!

Basic idea: whole-file caching
Fetch the whole file for the first time
Update on close
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AFS version 1
When open a file for the first time, cache it
Next time, TestAuth to determine if the file 
has changed

Performance is poor. Why?
Path-traversal costs are too high
Too many TestAuth messages
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AFS version 2
Solution

File identifier
Similar to file handle in NFS

A callback mechanism to reduce client/server 
interactions

An analogy to polling vs. interrupts
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AFS Crash Recovery
If a client crashes, it treats all cache contents 
as suspect. Send TestAuth to the server.
If the server crashes, it asks all clients to 
reconstruct the callback states



Discussion Again
Throughput
Latency
Scalability
Crash Recovery
Fault Tolerance
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