
Distributed Filesystems

Credit: Uses some slides by Jehan-Francois
Paris, Mark Claypool and Jeff Chase

DESIGN AND IMPLEMENTATION
OF THE SUN NETWORK
FILESYSTEM
R. Sandberg, D. Goldberg
S. Kleinman, D. Walsh, R. Lyon
Sun Microsystems

What is NFS?

First commercially successful network file system:
Developed by Sun Microsystems for their diskless workstations
Designed for robustness and “adequate performance”
Sun published all protocol specifications
Many many implementations

Overview and Objectives

Fast and efficient crash recovery
Why do crashes occur?

To accomplish this:
NFS is stateless – key design decision

All client requests must be self-contained
The virtual filesystem interface

VFS operations
VNODE operations

Additional objectives
Machine and Operating System Independence

Could be implemented on low-end machines of the mid-80’s

Transparent Access
Remote files should be accessed in exactly the same way as
local files

UNIX semantics should be maintained on client
Best way to achieve transparent access

“Reasonable” performance
Robustness and preservation of UNIX semantics were much
more important

Example

What if the client simply passes the open request to the server?
Server has state
Crash causes big problems

Three important parts
The protocol
The server side
The client side

The protocol (I)
Uses the Sun RPC mechanism and Sun eXternal
Data Representation (XDR) standard
Defined as a set of remote procedures
Protocol is stateless

Each procedure call contains all the information necessary to
complete the call

Server maintains no “between call” information

Advantages of statelessness
Crash recovery is very easy:

When a server crashes, client just resends request until
it gets an answer from the rebooted server
Client cannot tell difference between a server that has
crashed and recovered and a slow server

Client can always repeat any request

NFS as a “Stateless” Service
A classical NFS server maintains no in-memory
hard state.

The only hard state is the stable file system image on disk.
no record of clients or open files
no implicit arguments to requests

E.g., no server-maintained file offsets: read and write requests
must explicitly transmit the byte offset for each operation.

no write-back caching on the server
no record of recently processed requests
etc., etc....

Statelessness makes failure recovery simple
and efficient.

Consequences of statelessness
Read and writes must specify their start offset

Server does not keep track of current position in
the file
User still use conventional UNIX reads and writes

Open system call translates into several
lookup calls to server
No NFS equivalent to UNIX close system call

Important pieces of protocol

From protocol to distributed file system
Client side translates user requests to protocol
messages to implement the request remotely
Example:

The lookup call (I)
Returns a file handle instead of a file descriptor

File handle specifies unique location of file
Volume identifier, inode number and generation number

lookup(dirfh, name) returns (fh, attr)
Returns file handle fh and attributes of named file in directory
dirfh
Fails if client has no right to access directory dirfh

The lookup call (II)
One single open call such as
fd = open(“/usr/joe/6360/list.txt”)

will be result in several calls to lookup

lookup(rootfh, “usr”) returns (fh0, attr)
lookup(fh0, “joe”) returns (fh1, attr)
lookup(fh1, “6360”) returns (fh2, attr)
lookup(fh2, “list.txt”) returns (fh, attr)

Why all these steps?
Any of components of /usr/joe/6360/list.txt
could be a mount point

Mount points are client dependent and mount information is kept above the
lookup() level

Server side (I)
Server implements a write-through policy

Required by statelessness
Any blocks modified by a write request (including
i-nodes and indirect blocks) must be written back
to disk before the call completes

Server side (II)
File handle consists of

Filesystem id identifying disk partition
I-node number identifying file within partition
Generation number changed every time
i-node is reused to store a new file

Server will store
Filesystem id in filesystem superblock
I-node generation number in i-node

Client side (I)
Provides transparent interface to NFS
Mapping between remote file names and remote file
addresses is done a server boot time through remote
mount

Extension of UNIX mounts
Specified in a mount table

Makes a remote subtree appear part of a local subtree

Remote mount

Client tree

bin

usr

/
Server subtree

rmount

After rmount, root of server subtree
can be accessed as /usr

Client side (II)
Provides transparent access to

NFS
Other file systems (including UNIX FFS)

New virtual filesystem interface supports
VFS calls, which operate on whole file system
VNODE calls, which operate on individual files

Treats all files in the same fashion

Client side (III)

UNIX system calls

VNODE/VFS

Other FS NFS UNIX FS

User interface is
unchanged

RPC/XDR disk

LAN

Common interface

More examples

