
An Analysis of Linux 
Scalability to Many Cores
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What are we going to talk about?
Scalability analysis of 7 system applications 
running on Linux on a 48-core computer

Exim, memcached, Apache, PostgreSQL, gmake, 
Psearchy and MapReduce

How can we improve the traditional Linux for 
better scalability
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Introduction
Popular belief that traditional kernel designs 
won’t scale well on multicore processors
Can traditional kernel designs be used and 
implemented in a way that allows applications 
to scale?

3



Why Linux? Why these 
applications?

Linux has a traditional kernel design and the 
Linux community has made a great progress 
in making it scalable
The chosen applications are designed for 
parallel execution and stress many major 
Linux kernel components
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How can we decide if Linux is 
scalable?

Measure scalability of the applications on a 
recent Linux kernel 

2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems
Kernel design is scalable if the changes are 
modest
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Kind of problems
Linux kernel implementation
Applications’ user-level design
Applications’ use of Linux kernel services
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The Applications
2 Types of applications

Applications that previous work has shown not to 
scale well on Linux

Memcached, Apache and Metis (MapReduce library)
Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to 
use the kernel intensively

Stress the network stack, file name cache, page 
cache, memory manager, process manager and 
scheduler
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Exim
Exim is a mail server
Single master process listens for incoming 
SMTP connections via TCP
The master forks a new process for each 
connection
Has a good deal of parallelism
Spends 69% of its time in the kernel on a 
single core
Stresses process creation and small file 
creation and deletion
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memcached – Object cache 
In-memory key-value store used to improve 
web application performance
Has key-value hash table protected by 
internal lock
Stresses the network stack, spending 80% of 
its time processing packets in the kernel at 
one core
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Apache – Web server
Popular web server
Single instance listening on port 80.
One process per core – each process has a 
thread pool to service connections
On a single core, a process spends 60% of 
the time in the kernel
Stresses network stack and the file system
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PostgreSQL
Popular open source SQL database
Makes extensive internal use of shared data 
structures and synchronization
Stores database tables as regular files 
accessed concurrently by all processes
For read-only workload, it spends 1.5% of the 
time in the kernel with one core, and 82% 
with 48 cores
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gmake

Implementation of the standard make utility 
that supports executing independent build 
rules concurrently

Unofficial default benchmark in the Linux 
community

Creates more processes than cores, and 
reads and writes many files
Spends 7.6% of the time in the kernel with one 
core
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Psearchy – File indexer
Parallel version of searchy, a program to 
index and query web pages
Version in the article runs searchy indexer on 
each core, sharing a work queue of input files

13



Metis - MapReduce
MapReduce library for single multicore 
servers
Allocates large amount of memory to hold 
temporary tables, stressing the kernel 
memory allocator
Spends 3% of the time in the kernel with one 
core, 16% of the time with 48 cores
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Quick intro to Linux file system
Superblock - The superblock is essentially file system metadata and 
defines the file system type, size, status, and information about 
other metadata structures (metadata of metadata)

Inode - An inode exists in a file system and represents metadata 
about a file.

Dentry - A dentry is the glue that holds inodes and files together by 
relating inode numbers to file names. Dentries also play a role in 
directory caching which, ideally, keeps the most frequently used files 
on-hand for faster access. File system traversal is another aspect of 
the dentry as it maintains a relationship between directories and 
their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file
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Common problems
The tasks may lock shared data structures, so 
that increasing the number of cores increases 
the lock wait time

The tasks may write a shared memory location, 
so that increasing the number of cores increases 
the time spent waiting for the cache coherence 
protocol
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Common problems - cont
The tasks may compete for space in a limited 
size shared hardware cache, so that increasing 
the number of cores increases the cache miss 
rate

The tasks may compete for other shared 
hardware resources such as DRAM interface

There may be too few tasks to keep all cores 
busy
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Cache related problems
Many scaling problems are delays caused by 
cache misses when a core uses data that 
other core have written

Sometimes cache coherence related 
operation take about the same time as 
loading data from off-chip RAM

The cache coherence protocol serializes 
modifications to the same cache line
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Multicore packet processing
The Linux network stack connects different stages of 
packet processing with queues

A received packet typically passes through multiple queues 
before arriving at per-socket queue

The performance would be better if each packet, queue 
and connection be handled by just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network cards with 
multiple hardware queues
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Multicore packet processing (2)
Transmitting – place outgoing packets on the 
hardware queue associated with the current 
core
Receiving – configure the hardware to 
enqueue incoming packets matching a 
particular criteria (source ip and port) on a 
specific queue

Sample outgoing packets and update hardware’s 
flow directing tables to deliver incoming packets 
from that connection directly to the core 
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Sloppy counters – The problem
Linux uses shared counters for reference 
counting and to manage various resources

Lock-free atomic inc and dec do not help 
because of cache coherence
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Sloppy counter – The solution
Each core holds a few spare references to an 
object

It gives ownership of these references to threads 
running on that core when needed, without having 
to modify the global reference count
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Sloppy counter - cont
Core increments the sloppy counter by 𝑉:
1. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑉

I. Get 𝑉 references and decrement 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 by 𝑉 and finish
2. Acquire 𝑈 ≥ 𝑉 references from the central counter 

and increment the central counter by 𝑈
Core decrements the sloppy counter by 𝑉:
1. Release 𝑉 references for local use and decrement the 

local counter by 𝑉
2. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 release spare references 

by decrementing local count and central count 
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Sloppy counter - cont
Invariant:
∑ 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠+number of used resources = 
shared counter
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Sloppy counter - use
These counters are used for counting 
references to:

dentrys
vfsmounts
dst_entrys
track amount of memory allocated by each 
network protocol (such as TCP and UDP)
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Lock-free comparison
There are situations where there are 
bottlenecks because of low scalability of 
name lookups in the dentry cache

The dentry cache speed ups lookup by mapping a 
directory and a file name to a dentry identifying 
the matching inode
When a potential dentry is located, the lookup 
code acquires a per-dentry spin lock to atomically 
compare fields of the dentry with the arguments
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Lock-free comparison - cont
The search can be made lock-free

Use generation counter which is incremented 
after every modification. During modification 
temporarily set the generation counter to 0.
Comparison algorithm:
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Per core data structures
Kernel data structures that caused scaling 
bottlenecks:

Per super-block list of open files
Table of mount points
Pool of free packet buffers
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False sharing
Some applications caused false sharing in 
the kernel

A variable the kernel updated often was 
located on the same cache

line as a variable it read often
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Evaluation
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Technical details
The experiments were made on a 48 core 
machine 

Tyan Thunder S4985 board
8*(2.4 GHz 6-core AMD Opteron 8431 chips)
Each core has 64Kb L1 cache and 512Kb L2 
cache
The cores on each chip share 6Mb L3 cache
Each chip has 8Gb of local off-chip DRAM
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Exim

32



Exim - modifications
Berkeley DB reads /proc/stat to find number 
of cores 

Modification: Cache this information aggressively
Split incoming queues messages across 62 
spool directories, hashing by per connection 
pid
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memcached
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memcached - modifications
False read/write sharing of IXGBE device 
driver data in the net_device and device 
structures

Modification: rearrange structures to isolate 
critical read-only members to their own cache 
lines

Contention on dst_entry structure’s reference 
count in the network stack’s destination 
cache

Modification: use sloppy counter
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Apache
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PostgreSQL
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PostgreSQL - cont
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gmake
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Psearchy/pedsort
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Metis
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Summary of Linux scalability 
problems
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Summary of Linux scalability 
problems - cont
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Summary of Linux scalability 
problems - cont
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Summary of Linux scalability 
problems - cont
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Summary of Bottlenecks
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Summary
Most applications can scale well to many 
cores with modest modifications to the 
applications and to the kernel
More bottlenecks are expected to be 
revealed when running on more cores
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Filesystems

Credit: some slides by John 
Kubiatowicz and Anthony D. Joseph



Today and some of next class
Overview of file systems
Papers on basic file systems

A Fast File System for UNIX
Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler and Robert S. Fabry. Appears in 
ACM Transactions on Computer Systems (TOCS), Vol. 2, No. 3, August 1984, pp 181-197
Log Structured File Systems (LFS), Ousterhout and Rosenblum

System design paper and system analysis 
paper

http://www.cs.berkeley.edu/~kubitron/courses/cs262a-F12/handouts/papers/FFS.pdf


OS Abstractions
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Review: Magnetic Disk Characteristic

Cylinder: all the tracks under the 
head at a given point on all surface

Read/write data is a three-stage 
process:

Seek time: position the head/arm over the proper track (into proper cylinder)
Rotational latency: wait for the desired sector
to rotate under the read/write head
Transfer time: transfer a block of bits (sector)
under the read-write head

Disk Latency = Queuing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Highest Bandwidth: 
Transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

Hardw
are

Controller

Media Time
(Seek+Rot+Xfer)

Request

Result



Historical Perspective
1956 IBM Ramac — early 1970s Winchester

Developed for mainframe computers, proprietary interfaces
Steady shrink in form factor: 27 in. to 14 in.

Form factor and capacity drives market more than performance
1970s developments

5.25 inch floppy disk formfactor (microcode into mainframe)
Emergence of industry standard disk interfaces

Early 1980s: PCs and first generation workstations
Mid 1980s: Client/server computing 

Centralized storage on file server
accelerates disk downsizing: 8 inch to 5.25

Mass market disk drives become a reality
industry standards: SCSI, IPI, IDE
5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

1900s: Laptops => 2.5 inch drives
2000s: Shift to perpendicular recording

2007: Seagate introduces 1TB drive
2009: Seagate/WD introduces 2TB drive

2014: Seagate announces 8TB drives



Disk History

Data 
density
Mbit/sq. in.

Capacity of
Unit Shown
Megabytes

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2,300 MBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even mroe data into even smaller spaces”



Disk History

1989:
63 Mbit/sq. in
60,000 MBytes

1997:
1450 Mbit/sq. in
2300 MBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even mroe data into even smaller spaces”

1997:
3090 Mbit/sq. in
8100 MBytes



Recent: Seagate Enterprise (2015) 

10TB! 800 Gbits/inch2

7 (3.5”) platters, 2 heads each

7200 RPM, 8ms seek latency

249/225 MB/sec read/write 
transfer rates

2.5million hours MTBF

256MB cache

$650



Contrarian View
FFS doesn’t matter in 2012!

What about Journaling? Is it still relevant?



60 TB SSD ($20,000)



Storage Performance & Price
Bandwidth 
(sequential R/W)

Cost/GB Size

HHD 50-100 MB/s $0.05-0.1/GB 2-4 TB

SSD1 200-500 MB/s (SATA)
6 GB/s (PCI)

$1.5-5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

58BW: SSD up to x10 than HDD, DRAM > x10 than SSD
Price: HDD x30 less than SSD, SSD x4 less than DRAM   

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/

http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/


File system abstractions
How do users/user programs interact with the file 
system?

Files
Directories
Links
Protection/sharing model

Accessed and manipulated by a virtual file system set of 
system calls

File system implementation:
How to map these abstractions to the storage devices
Alternatively, how to implement those system calls 



File system basics
Virtual file system abstracts away concrete file system 
implementation

Isolates applications from details of the file system

Linux vfs interface includes:
creat(name)
open(name, how)
read(fd, buf, len)
write(fd, buf, len)
sync(fd)
seek(fd, pos)
close(fd)
unlink(name)



Disk Layout Strategies

Files span multiple disk blocks
How do you find all of the blocks for a file?
1. Contiguous allocation

Like memory
Fast, simplifies directory access
Inflexible, causes fragmentation, needs compaction

2. Linked structure
Each block points to the next, directory points to the first
Bad for random access patterns

3. Indexed structure (indirection, hierarchy)
An “index block” contains pointers to many other blocks
Handles random better, still good for sequential
May need multiple index blocks (linked together)
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Zooming in on i-node
i-node: structure for per-file 
metadata (unique per file)

contains: ownership, permissions, 
timestamps, about 10 data-block 
pointers
i-nodes form an array, indexed by 
“i-number” – so each i-node has a 
unique i-number
Array is explicit for FFS, implicit for 
LFS (its i-node map is cache of
i-nodes indexed by i-number)

Indirect blocks:
i-node only holds a small number of data block pointers (direct pointers)
For larger files, i-node points to an indirect block containing 
1024 4-byte entries in a 4K block
Each indirect block entry points to a data block
Can have multiple levels of indirect blocks for even larger files



Unix Inodes and Path Search

Unix Inodes are not directories
Inodes describe where on disk the blocks for a file are placed

Directories are files, so inodes also describe where the blocks for 
directories are placed on the disk

Directory entries map file names to inodes
To open “/one”, use Master Block to find inode for “/” on disk
Open “/”, look for entry for “one”
This entry gives the disk block number for the inode for “one”
Read the inode for “one” into memory
The inode says where first data block is on disk
Read that block into memory to access the data in the file

This is why we have open in addition to read and write
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A naïve implementation
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