
An Analysis of Linux
Scalability to Many Cores

1

What are we going to talk about?
Scalability analysis of 7 system applications
running on Linux on a 48-core computer

Exim, memcached, Apache, PostgreSQL, gmake,
Psearchy and MapReduce

How can we improve the traditional Linux for
better scalability

2

Introduction
Popular belief that traditional kernel designs
won’t scale well on multicore processors
Can traditional kernel designs be used and
implemented in a way that allows applications
to scale?

3

Why Linux? Why these
applications?

Linux has a traditional kernel design and the
Linux community has made a great progress
in making it scalable
The chosen applications are designed for
parallel execution and stress many major
Linux kernel components

4

How can we decide if Linux is
scalable?

Measure scalability of the applications on a
recent Linux kernel

2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems
Kernel design is scalable if the changes are
modest

5

Kind of problems
Linux kernel implementation
Applications’ user-level design
Applications’ use of Linux kernel services

6

The Applications
2 Types of applications

Applications that previous work has shown not to
scale well on Linux

Memcached, Apache and Metis (MapReduce library)
Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to
use the kernel intensively

Stress the network stack, file name cache, page
cache, memory manager, process manager and
scheduler

7

Exim
Exim is a mail server
Single master process listens for incoming
SMTP connections via TCP
The master forks a new process for each
connection
Has a good deal of parallelism
Spends 69% of its time in the kernel on a
single core
Stresses process creation and small file
creation and deletion

8

memcached – Object cache
In-memory key-value store used to improve
web application performance
Has key-value hash table protected by
internal lock
Stresses the network stack, spending 80% of
its time processing packets in the kernel at
one core

9

Apache – Web server
Popular web server
Single instance listening on port 80.
One process per core – each process has a
thread pool to service connections
On a single core, a process spends 60% of
the time in the kernel
Stresses network stack and the file system

10

PostgreSQL
Popular open source SQL database
Makes extensive internal use of shared data
structures and synchronization
Stores database tables as regular files
accessed concurrently by all processes
For read-only workload, it spends 1.5% of the
time in the kernel with one core, and 82%
with 48 cores

11

gmake

Implementation of the standard make utility
that supports executing independent build
rules concurrently

Unofficial default benchmark in the Linux
community

Creates more processes than cores, and
reads and writes many files
Spends 7.6% of the time in the kernel with one
core

12

Psearchy – File indexer
Parallel version of searchy, a program to
index and query web pages
Version in the article runs searchy indexer on
each core, sharing a work queue of input files

13

Metis - MapReduce
MapReduce library for single multicore
servers
Allocates large amount of memory to hold
temporary tables, stressing the kernel
memory allocator
Spends 3% of the time in the kernel with one
core, 16% of the time with 48 cores

14

Quick intro to Linux file system
Superblock - The superblock is essentially file system metadata and
defines the file system type, size, status, and information about
other metadata structures (metadata of metadata)

Inode - An inode exists in a file system and represents metadata
about a file.

Dentry - A dentry is the glue that holds inodes and files together by
relating inode numbers to file names. Dentries also play a role in
directory caching which, ideally, keeps the most frequently used files
on-hand for faster access. File system traversal is another aspect of
the dentry as it maintains a relationship between directories and
their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file

15

Common problems
The tasks may lock shared data structures, so
that increasing the number of cores increases
the lock wait time

The tasks may write a shared memory location,
so that increasing the number of cores increases
the time spent waiting for the cache coherence
protocol

16

Common problems - cont
The tasks may compete for space in a limited
size shared hardware cache, so that increasing
the number of cores increases the cache miss
rate

The tasks may compete for other shared
hardware resources such as DRAM interface

There may be too few tasks to keep all cores
busy

17

Cache related problems
Many scaling problems are delays caused by
cache misses when a core uses data that
other core have written

Sometimes cache coherence related
operation take about the same time as
loading data from off-chip RAM

The cache coherence protocol serializes
modifications to the same cache line

18

Multicore packet processing
The Linux network stack connects different stages of
packet processing with queues

A received packet typically passes through multiple queues
before arriving at per-socket queue

The performance would be better if each packet, queue
and connection be handled by just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network cards with
multiple hardware queues

19

Multicore packet processing (2)
Transmitting – place outgoing packets on the
hardware queue associated with the current
core
Receiving – configure the hardware to
enqueue incoming packets matching a
particular criteria (source ip and port) on a
specific queue

Sample outgoing packets and update hardware’s
flow directing tables to deliver incoming packets
from that connection directly to the core

20

Sloppy counters – The problem
Linux uses shared counters for reference
counting and to manage various resources

Lock-free atomic inc and dec do not help
because of cache coherence

21

Sloppy counter – The solution
Each core holds a few spare references to an
object

It gives ownership of these references to threads
running on that core when needed, without having
to modify the global reference count

22

Sloppy counter - cont
Core increments the sloppy counter by 𝑉:
1. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑉

I. Get 𝑉 references and decrement 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 by 𝑉 and finish
2. Acquire 𝑈 ≥ 𝑉 references from the central counter

and increment the central counter by 𝑈
Core decrements the sloppy counter by 𝑉:
1. Release 𝑉 references for local use and decrement the

local counter by 𝑉
2. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 release spare references

by decrementing local count and central count

23

Sloppy counter - cont
Invariant:
∑ 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠+number of used resources =
shared counter

24

Sloppy counter - use
These counters are used for counting
references to:

dentrys
vfsmounts
dst_entrys
track amount of memory allocated by each
network protocol (such as TCP and UDP)

25

Lock-free comparison
There are situations where there are
bottlenecks because of low scalability of
name lookups in the dentry cache

The dentry cache speed ups lookup by mapping a
directory and a file name to a dentry identifying
the matching inode
When a potential dentry is located, the lookup
code acquires a per-dentry spin lock to atomically
compare fields of the dentry with the arguments

26

Lock-free comparison - cont
The search can be made lock-free

Use generation counter which is incremented
after every modification. During modification
temporarily set the generation counter to 0.
Comparison algorithm:

27

Per core data structures
Kernel data structures that caused scaling
bottlenecks:

Per super-block list of open files
Table of mount points
Pool of free packet buffers

28

False sharing
Some applications caused false sharing in
the kernel

A variable the kernel updated often was
located on the same cache

line as a variable it read often

29

Evaluation

30

Technical details
The experiments were made on a 48 core
machine

Tyan Thunder S4985 board
8*(2.4 GHz 6-core AMD Opteron 8431 chips)
Each core has 64Kb L1 cache and 512Kb L2
cache
The cores on each chip share 6Mb L3 cache
Each chip has 8Gb of local off-chip DRAM

31

Exim

32

Exim - modifications
Berkeley DB reads /proc/stat to find number
of cores

Modification: Cache this information aggressively
Split incoming queues messages across 62
spool directories, hashing by per connection
pid

33

memcached

34

memcached - modifications
False read/write sharing of IXGBE device
driver data in the net_device and device
structures

Modification: rearrange structures to isolate
critical read-only members to their own cache
lines

Contention on dst_entry structure’s reference
count in the network stack’s destination
cache

Modification: use sloppy counter

35

Apache

36

PostgreSQL

37

PostgreSQL - cont

38

gmake

39

Psearchy/pedsort

40

Metis

41

Summary of Linux scalability
problems

42

Summary of Linux scalability
problems - cont

43

Summary of Linux scalability
problems - cont

44

Summary of Linux scalability
problems - cont

45

Summary of Bottlenecks

46

Summary
Most applications can scale well to many
cores with modest modifications to the
applications and to the kernel
More bottlenecks are expected to be
revealed when running on more cores

47

Filesystems

Credit: some slides by John
Kubiatowicz and Anthony D. Joseph

Today and some of next class
Overview of file systems
Papers on basic file systems

A Fast File System for UNIX
Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler and Robert S. Fabry. Appears in
ACM Transactions on Computer Systems (TOCS), Vol. 2, No. 3, August 1984, pp 181-197
Log Structured File Systems (LFS), Ousterhout and Rosenblum

System design paper and system analysis
paper

http://www.cs.berkeley.edu/~kubitron/courses/cs262a-F12/handouts/papers/FFS.pdf

OS Abstractions

50

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

Review: Magnetic Disk Characteristic

Cylinder: all the tracks under the
head at a given point on all surface

Read/write data is a three-stage
process:

Seek time: position the head/arm over the proper track (into proper cylinder)
Rotational latency: wait for the desired sector
to rotate under the read/write head
Transfer time: transfer a block of bits (sector)
under the read-write head

Disk Latency = Queuing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Highest Bandwidth:
Transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

Hardw
are

Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Historical Perspective
1956 IBM Ramac — early 1970s Winchester

Developed for mainframe computers, proprietary interfaces
Steady shrink in form factor: 27 in. to 14 in.

Form factor and capacity drives market more than performance
1970s developments

5.25 inch floppy disk formfactor (microcode into mainframe)
Emergence of industry standard disk interfaces

Early 1980s: PCs and first generation workstations
Mid 1980s: Client/server computing

Centralized storage on file server
accelerates disk downsizing: 8 inch to 5.25

Mass market disk drives become a reality
industry standards: SCSI, IPI, IDE
5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

1900s: Laptops => 2.5 inch drives
2000s: Shift to perpendicular recording

2007: Seagate introduces 1TB drive
2009: Seagate/WD introduces 2TB drive

2014: Seagate announces 8TB drives

Disk History

Data
density
Mbit/sq. in.

Capacity of
Unit Shown
Megabytes

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2,300 MBytes

source: New York Times, 2/23/98, page C3,
“Makers of disk drives crowd even mroe data into even smaller spaces”

Disk History

1989:
63 Mbit/sq. in
60,000 MBytes

1997:
1450 Mbit/sq. in
2300 MBytes

source: New York Times, 2/23/98, page C3,
“Makers of disk drives crowd even mroe data into even smaller spaces”

1997:
3090 Mbit/sq. in
8100 MBytes

Recent: Seagate Enterprise (2015)

10TB! 800 Gbits/inch2

7 (3.5”) platters, 2 heads each

7200 RPM, 8ms seek latency

249/225 MB/sec read/write
transfer rates

2.5million hours MTBF

256MB cache

$650

Contrarian View
FFS doesn’t matter in 2012!

What about Journaling? Is it still relevant?

60 TB SSD ($20,000)

Storage Performance & Price
Bandwidth
(sequential R/W)

Cost/GB Size

HHD 50-100 MB/s $0.05-0.1/GB 2-4 TB

SSD1 200-500 MB/s (SATA)
6 GB/s (PCI)

$1.5-5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

58BW: SSD up to x10 than HDD, DRAM > x10 than SSD
Price: HDD x30 less than SSD, SSD x4 less than DRAM

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/

http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/

File system abstractions
How do users/user programs interact with the file
system?

Files
Directories
Links
Protection/sharing model

Accessed and manipulated by a virtual file system set of
system calls

File system implementation:
How to map these abstractions to the storage devices
Alternatively, how to implement those system calls

File system basics
Virtual file system abstracts away concrete file system
implementation

Isolates applications from details of the file system

Linux vfs interface includes:
creat(name)
open(name, how)
read(fd, buf, len)
write(fd, buf, len)
sync(fd)
seek(fd, pos)
close(fd)
unlink(name)

Disk Layout Strategies

Files span multiple disk blocks
How do you find all of the blocks for a file?
1. Contiguous allocation

Like memory
Fast, simplifies directory access
Inflexible, causes fragmentation, needs compaction

2. Linked structure
Each block points to the next, directory points to the first
Bad for random access patterns

3. Indexed structure (indirection, hierarchy)
An “index block” contains pointers to many other blocks
Handles random better, still good for sequential
May need multiple index blocks (linked together)

61

Zooming in on i-node
i-node: structure for per-file
metadata (unique per file)

contains: ownership, permissions,
timestamps, about 10 data-block
pointers
i-nodes form an array, indexed by
“i-number” – so each i-node has a
unique i-number
Array is explicit for FFS, implicit for
LFS (its i-node map is cache of
i-nodes indexed by i-number)

Indirect blocks:
i-node only holds a small number of data block pointers (direct pointers)
For larger files, i-node points to an indirect block containing
1024 4-byte entries in a 4K block
Each indirect block entry points to a data block
Can have multiple levels of indirect blocks for even larger files

Unix Inodes and Path Search

Unix Inodes are not directories
Inodes describe where on disk the blocks for a file are placed

Directories are files, so inodes also describe where the blocks for
directories are placed on the disk

Directory entries map file names to inodes
To open “/one”, use Master Block to find inode for “/” on disk
Open “/”, look for entry for “one”
This entry gives the disk block number for the inode for “one”
Read the inode for “one” into memory
The inode says where first data block is on disk
Read that block into memory to access the data in the file

This is why we have open in addition to read and write

63

A naïve implementation

64

