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Linux Synch. Primitives
Technique Description Scope
Per-CPU 
variables

Duplicate a data structure 
among CPUs

All CPUs

Atomic operation Atomic read-modify-write 
instruction

All

Memory barrier Avoid instruction re-ordering Local CPU
Spin lock Lock with busy wait All
Semaphore Lock with blocking wait (sleep) All 

Seqlocks Lock based on access counter All 
Local interrupt 
disabling

Forbid interrupt on a single CPU Local 

Local softirq 
disabling

Forbid deferrable function on a 
single CPU

Local 

Read-copy-
update (RCU)

Lock-free access to shared data 
through pointers

All



Why are we reading this paper?
Example of a synchronization primitive that is:

Lock free (mostly/for reads)
Tuned to a common access pattern
Making the common case fast

What is this common pattern?
A lot of reads
Writes are rare
Prioritize writes
Ok to read a slightly stale copy

But that can be fixed too
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Traditional OS locking designs
complex
poor concurrency
Fail to take advantage of event-driven nature 
of operating systems
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Motivation
Locks have acquire and release cost

Each uses atomic operations which are expensive
Can dominate cost for short critical regions
Locks become the bottleneck

Readers/writers lock is also expensive – uses 
atomic increment/decrement for reader count
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Lock free data structures
Do not require locks
Good if contention is rare
But difficult to create and error prone
RCU is a mixture

Concurrent changes to pointers a challenge for 
lock-free
RCU serializes writers using locks
Win if most of our accesses are reads
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Race Between Teardown and Use of Service
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Can fix with 
locking, but we 
have to use the 
lock every 
operation



Read-Copy Update Handling Race

8

quiescent state

When

Cannot be 
context 
switched inside 
RCU



Typical RCU update sequence 
Replace pointers to a data structure with pointers 
to a new version

Is this replacement atomic?
Wait for all previous reader to complete their RCU 
read-side critical sections.
At this point, there cannot be any readers who 
hold reference to the data structure, so it now may 
safely be reclaimed. 
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Read-Copy Search
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Reference-Counted Search
Read-Copy Search



Read-Copy Deletion
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Reference-counted Deletion Read-Copy Deletion



Read-Copy Deletion  (delete B)
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the first phase of the update
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Read-Copy Deletion
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When



Read-Copy Deletion
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Simple Grace-Period Detection
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wait_for_rcu()  I
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wait_for_rcu() II
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Implementations of Quiescent State
1. simply execute onto each CPU in turn.

2. use context switch, execution in the idle loop, 
execution in user mode, system call entry, trap 
from user mode as the quiescent states.

3. voluntary context switch as the sole quiescent 
state

4. tracks beginnings and ends of operations
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Implementation (option 4)
Generation counter for each RCU region
Generation updated on write
Every read increments generation counter 
going in

And decrements it going out
Quiescence = counter is zero
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RCU usage in Linux

21Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html



RCU as percentage of all locking in linux

22Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html



Shortcomings
Does not work in a preemptive kernel unless 
preemption is suppressed in all read-side 
critical sections
Cannot be called from an interrupt handler
Should not be called while holding a spinlock 
or with interrupts disabled
Relatively slow
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} Read-side critical section
◦ Readers can now be preempted in their read-side 

critical
◦ Disable preemption on entry and re-enable on exit

} Memory freed using synchronize_sched()
◦ Counts scheduler preemptions

} Benefits and trade-offs
◦ Allows use of RCU with preemptible kernel
◦ Read-side critical section won’t be preempted by RT 

events, negative consequences for RT responsiveness
◦ Additional read-side work to disable/enable 

preemption

Preemptible kernels



Per-CPU counter
Atomic increment in rcu_read_lock()
Atomic decrement in rcu_read_unlock()

Quiescent state defined as all per CPU 
counters down to 0

RCU – with counters
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Overview
Hardware is changing, so software must too

Multicores are here to stay
Architectures are heterogeneous
Applications are unpredictable unlike specialized 
systems

How do operating systems scale?
Do we need new OS architectures?
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Landscape/motivation
Systems are diverse

different implementations require different tradeoffs
Some nice examples

Cores are increasingly diverse
Different general-purpose cores
Accelerators and specialized processors
Typically cannot share an OS with such differences

Interconnects matter: within cores and across 
cores
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What has gone on before?
Early on, locks were not so expensive

Just use them
Hardware evolved, memory expensive

Large caches
Cache coherence
NUMA machines 
Increasing gap between memory and processor
Shared memory expensive!
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The Multikernel: A New OS 
Architecture for Scalable 
Multicore Systems

By (last names):  Baumann, Barham, 
Dagand, Harris, Isaacs, Peter, 
Roscoe, Schupbach, Singhania
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The Modern Kernel(s)
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Monolithic Microkernel



The Problem with Modern Kernels

Modern Operating systems can no longer 
take serious advantage of the hardware 
they are running on
There exists a scalability issue in the 
shared memory model that many modern 
kernels abide by
Cache coherence overhead restricts the 
ability to scale to many-cores
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Solution: MultiKernel
Treat the machine as a network of 
independent cores

Make all inter-core communication explicit; 
use message passing

Make OS structure hardware-neutral

View state as replicated instead of shared
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But wait! Isn’t message passing 
slower than Shared Memory?

Not at scale
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But wait! Isn’t message passing 
slower than Shared Memory?

At scale it has been shown that message 
passing has surpassed shared memory 
efficiency
Shared memory at scale seems to be 
plagued by cache misses which cause core 
stalls
Hardware is starting to resemble a message-
passing network
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But wait! Isn’t message passing 
slower than Shared Memory? 
(cont.)
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But wait! Isn’t message passing 
slower than Shared Memory? 
(cont.)
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The MultiKernel Model
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