
Advanced Operating Systems
(CS 202)

Read Copy Update (RCU)

Linux Synch. Primitives
Technique Description Scope
Per-CPU
variables

Duplicate a data structure
among CPUs

All CPUs

Atomic operation Atomic read-modify-write
instruction

All

Memory barrier Avoid instruction re-ordering Local CPU
Spin lock Lock with busy wait All
Semaphore Lock with blocking wait (sleep) All

Seqlocks Lock based on access counter All
Local interrupt
disabling

Forbid interrupt on a single CPU Local

Local softirq
disabling

Forbid deferrable function on a
single CPU

Local

Read-copy-
update (RCU)

Lock-free access to shared data
through pointers

All

Why are we reading this paper?
Example of a synchronization primitive that is:

Lock free (mostly/for reads)
Tuned to a common access pattern
Making the common case fast

What is this common pattern?
A lot of reads
Writes are rare
Prioritize writes
Ok to read a slightly stale copy

But that can be fixed too

3

Traditional OS locking designs
complex
poor concurrency
Fail to take advantage of event-driven nature
of operating systems

4

Motivation
Locks have acquire and release cost

Each uses atomic operations which are expensive
Can dominate cost for short critical regions
Locks become the bottleneck

Readers/writers lock is also expensive – uses
atomic increment/decrement for reader count

5

Lock free data structures
Do not require locks
Good if contention is rare
But difficult to create and error prone
RCU is a mixture

Concurrent changes to pointers a challenge for
lock-free
RCU serializes writers using locks
Win if most of our accesses are reads

6

Race Between Teardown and Use of Service

7

Can fix with
locking, but we
have to use the
lock every
operation

Read-Copy Update Handling Race

8

quiescent state

When

Cannot be
context
switched inside
RCU

Typical RCU update sequence
Replace pointers to a data structure with pointers
to a new version

Is this replacement atomic?
Wait for all previous reader to complete their RCU
read-side critical sections.
At this point, there cannot be any readers who
hold reference to the data structure, so it now may
safely be reclaimed.

9

Read-Copy Search

10

Reference-Counted Search
Read-Copy Search

Read-Copy Deletion

11
18

Reference-counted Deletion Read-Copy Deletion

Read-Copy Deletion (delete B)

12

the first phase of the update

13

Read-Copy Deletion

14

When

Read-Copy Deletion

15

Simple Grace-Period Detection

16

wait_for_rcu() I

17

wait_for_rcu() II

18

Implementations of Quiescent State
1. simply execute onto each CPU in turn.

2. use context switch, execution in the idle loop,
execution in user mode, system call entry, trap
from user mode as the quiescent states.

3. voluntary context switch as the sole quiescent
state

4. tracks beginnings and ends of operations

19

Implementation (option 4)
Generation counter for each RCU region
Generation updated on write
Every read increments generation counter
going in

And decrements it going out
Quiescence = counter is zero

20

RCU usage in Linux

21Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html

RCU as percentage of all locking in linux

22Source: http://www.rdrop.com/users/paulmc/RCU/linuxusage.html

Shortcomings
Does not work in a preemptive kernel unless
preemption is suppressed in all read-side
critical sections
Cannot be called from an interrupt handler
Should not be called while holding a spinlock
or with interrupts disabled
Relatively slow

23

} Read-side critical section
◦ Readers can now be preempted in their read-side

critical
◦ Disable preemption on entry and re-enable on exit

} Memory freed using synchronize_sched()
◦ Counts scheduler preemptions

} Benefits and trade-offs
◦ Allows use of RCU with preemptible kernel
◦ Read-side critical section won’t be preempted by RT

events, negative consequences for RT responsiveness
◦ Additional read-side work to disable/enable

preemption

Preemptible kernels

Per-CPU counter
Atomic increment in rcu_read_lock()
Atomic decrement in rcu_read_unlock()

Quiescent state defined as all per CPU
counters down to 0

RCU – with counters

Advanced Operating Systems
(CS 202)

Distributed OS– intro and discussion

Overview
Hardware is changing, so software must too

Multicores are here to stay
Architectures are heterogeneous
Applications are unpredictable unlike specialized
systems

How do operating systems scale?
Do we need new OS architectures?

27

Landscape/motivation
Systems are diverse

different implementations require different tradeoffs
Some nice examples

Cores are increasingly diverse
Different general-purpose cores
Accelerators and specialized processors
Typically cannot share an OS with such differences

Interconnects matter: within cores and across
cores

28

What has gone on before?
Early on, locks were not so expensive

Just use them
Hardware evolved, memory expensive

Large caches
Cache coherence
NUMA machines
Increasing gap between memory and processor
Shared memory expensive!

29

The Multikernel: A New OS
Architecture for Scalable
Multicore Systems

By (last names): Baumann, Barham,
Dagand, Harris, Isaacs, Peter,
Roscoe, Schupbach, Singhania

30

The Modern Kernel(s)

31

Monolithic Microkernel

The Problem with Modern Kernels

Modern Operating systems can no longer
take serious advantage of the hardware
they are running on
There exists a scalability issue in the
shared memory model that many modern
kernels abide by
Cache coherence overhead restricts the
ability to scale to many-cores

32

Solution: MultiKernel
Treat the machine as a network of
independent cores

Make all inter-core communication explicit;
use message passing

Make OS structure hardware-neutral

View state as replicated instead of shared

33

But wait! Isn’t message passing
slower than Shared Memory?

Not at scale

34

But wait! Isn’t message passing
slower than Shared Memory?

At scale it has been shown that message
passing has surpassed shared memory
efficiency
Shared memory at scale seems to be
plagued by cache misses which cause core
stalls
Hardware is starting to resemble a message-
passing network

35

But wait! Isn’t message passing
slower than Shared Memory?
(cont.)

36

But wait! Isn’t message passing
slower than Shared Memory?
(cont.)

37

The MultiKernel Model

38

