
Advanced Operating Systems

(CS 202)

Memory Consistency, Cache

Coherence and

Synchronization

(some cache coherence slides adapted from Ian
Watson; some memory consistency slides from
Sarita Adve)

Classic Example

Suppose we have to implement a function to handle

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

Now suppose that you and your father share a bank

account with a balance of $1000

Then you each go to separate ATM machines and

simultaneously withdraw $100 from the account

2

Interleaved Schedules

The problem is that the execution of the two

threads can be interleaved:

What is the balance of the account now?

3

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

put_balance(account, balance);

Execution

sequence

seen by CPU Context switch

How Interleaved Can It Get?

How contorted can the interleavings be?

We'll assume that the only atomic operations are reads
and writes of individual memory locations

Some architectures don't even give you that!

We'll assume that a context
switch can occur at any time

We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

4

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

Mutual Exclusion

Mutual exclusion to synchronize access to shared
resources

This allows us to have larger atomic blocks

What does atomic mean?

Code that uses mutual called a critical section
Only one thread at a time can execute in the critical section

All other threads are forced to wait on entry

When a thread leaves a critical section, another can enter

Example: sharing an ATM with others

What requirements would you place on a critical section?

5

Using Locks

6

withdraw (account, amount) {

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

release(lock);

return balance;

}

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

release(lock);

acquire(lock);

put_balance(account, balance);

release(lock);

Critical

Section

Using Test-And-Set

Here is our lock implementation with test-

and-set:

When will the while return? What is the

value of held?

7

struct lock {

int held = 0;

}

void acquire (lock) {

while (test-and-set(&lock->held));

}

void release (lock) {

lock->held = 0;

}

Overview

Before we talk deeply about synchronization

Need to get an idea about the memory model in shared memory

systems

Is synchronization only an issue in multi-processor systems?

What is a shared memory processor (SMP)?

Shared memory processors

Two primary architectures:

Bus-based/local network shared-memory machines (small-scale)

Directory-based shared-memory machines (large-scale)

8

Plan…

Introduce and discuss cache coherence

Discuss basic synchronization, up to MCS

locks (from the paper we are reading)

Introduce memory consistency and

implications

Is this an architecture class???

The same issues manifest in large scale

distributed systems

9

Crash course on

cache coherence

10

Bus-based Shared Memory Organization

Basic picture is simple :-

11

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Shared

Memory

Organization

Bus is usually simple physical connection

(wires)

Bus bandwidth limits no. of CPUs

Could be multiple memory elements

For now, assume that each CPU has only a

single level of cache

12

Problem of Memory Coherence

Assume just single level caches and main

memory

Processor writes to location in its cache

Other caches may hold shared copies - these

will be out of date

Updating main memory alone is not enough

What happens if two updates happen at (nearly)

the same time?

Can two different processors see them out of order?

13

Example

14

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Shared

Memory

X: 24

Processor 1 reads X: obtains 24 from memory and caches it

Processor 2 reads X: obtains 24 from memory and caches it

Processor 1 writes 32 to X: its locally cached copy is updated

Processor 3 reads X: what value should it get?

Memory and processor 2 think it is 24

Processor 1 thinks it is 32

Notice that having write-through caches is not good enough

1 2 3

Cache Coherence

Try to make the system behave as if there are
no caches!

How? Idea: Try to make every CPU know who has a
copy of its cached data?

too complex!

More practical:
Snoopy caches

Each CPU snoops memory bus

Looks for read/write activity concerned with data addresses which it
has cached.

What does it do with them?

This assumes a bus structure where all communication can be seen
by all.

More scalable solution: ‘directory based’ coherence
schemes

15

Snooping Protocols

Write Invalidate

CPU with write operation sends invalidate
message

Snooping caches invalidate their copy

CPU writes to its cached copy

Write through or write back?

Any shared read in other CPUs will now miss in
cache and re-fetch new data.

16

Snooping Protocols

Write Update

CPU with write updates its own copy

All snooping caches update their copy

Note that in both schemes, problem of

simultaneous writes is taken care of by bus

arbitration - only one CPU can use the bus at

any one time.

Harder problem for arbitrary networks

17

Update or Invalidate?

Which should we use?

Bus bandwidth is a precious commodity in
shared memory multi-processors

Contention/cache interrogation can lead to 10x or
more drop in performance

(also important to minimize false sharing)

Therefore, invalidate protocols used in most
commercial SMPs

18

Cache Coherence summary

Reads and writes are atomic

What does atomic mean?

As if there is no cache

Some magic to make things work

Have performance implications

…and therefore, have implications on

performance of programs

19

So, lets try our hand

at some

synchronization

20

What is synchronization?

Making sure that concurrent activities don’t

access shared data in inconsistent ways

int i = 0; // shared

Thread A Thread B

i=i+1; i=i-1;

What is in i?

21

What are the sources of concurrency?

Multiple user-space processes

On multiple CPUs

Device interrupts

Workqueues

Tasklets

Timers

22

Pitfalls in scull

Race condition: result of uncontrolled access

to shared data
if (!dptr->data[s_pos]) {

dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

if (!dptr->data[s_pos]) {

goto out;

}

}

Scull is the Simple Character Utility for Locality Loading (an example device driver from

the Linux Device Driver book)

Pitfalls in scull

Race condition: result of uncontrolled access

to shared data

if (!dptr->data[s_pos]) {

dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

if (!dptr->data[s_pos]) {

goto out;

}

}

Pitfalls in scull

Race condition: result of uncontrolled access

to shared data

if (!dptr->data[s_pos]) {

dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

if (!dptr->data[s_pos]) {

goto out;

}

}

Pitfalls in scull

Race condition: result of uncontrolled access

to shared data

if (!dptr->data[s_pos]) {

dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

if (!dptr->data[s_pos]) {

goto out;

}

}
Memory leak

Synchronization primitives

Lock/Mutex

To protect a shared variable, surround it with a

lock (critical region)

Only one thread can get the lock at a time

Provides mutual exclusion

Shared locks

More than one thread allowed (hmm…)

Others? Yes, including Barriers (discussed in

the paper)

27

Synchronization primitives (cont’d)

Lock based

Blocking (e.g., semaphores, futexes, completions)

Non-blocking (e.g., spin-lock, …)

Sometimes we have to use spinlocks

Lock free (or partially lock free ☺)

Atomic instructions

seqLocks

RCU

Transactions

28

How about locks?

Lock(L): Unlock(L):

If(L==0) L=0;

L=1;

else

while(L==1);

//wait

go back;

29

Can we do this just with atomic reads and writes?

Check and lock are not atomic!

Yes but not easy—Decker’s algorithm

Easier to use read-modify-update atomic instructions

Naïve implementation of spinlock

Lock(L):

While(test_and_set(L));

//we have the lock!

//eat, dance and be merry

Unlock(L)

L=0;

30

Why naïve?

Works? Yes, but not used in practice

Contention

Think about the cache coherence protocol

Set in test and set is a write operation

Has to go to memory

A lot of cache coherence traffic

Unnecessary unless the lock has been released

Imagine if many threads are waiting to get the lock

Fairness/starvation

31

Better implementation: Spin on read

Assumption: We have cache coherence

Not all are: e.g., Intel SCC

Lock(L):

while(L==locked); //wait

if(test_and_set(L)==locked) go back;

Still a lot of chattering when there is an unlock

Spin lock with backoff

32

Bakery Algorithm

struct lock {

int next_ticket;

int now_serving; }

Acquire_lock:

int my_ticket = fetch_and_inc(L->next_ticket);

while(L->new_serving!=my_ticket); //wait

//Eat, Dance and me merry!

Release_lock:

L->now_serving++;

Comments? Fairness? Efficiency/cache coherence?

33

Still too much chatter

Anderson Lock (Array lock)

Problem with bakery algorithm:

All threads listening to next_serving

A lot of cache coherence chatter

But only one will actually acquire the lock

Can we have each thread wait on a different

variable to reduce chatter?

34

Anderson’s Lock

We have an array (actually circular queue) of variables

Each variable can indicate either lock available or waiting for lock

Only one location has lock available

Lock(L):

my_place = fetch_and_inc (queuelast);

while (flags[myplace mod N] == must_wait);

Unlock(L)

flags[myplace mod N] = must_wait;

flags[mypalce+1 mod N] = available;

35

Fair and not noisy – compare to spin-on-read and bakery algorithm

Any negative side effects?

Concurrency and

Memory Consistency
References:

• Shared Memory Consistency Models: A Tutorial, Sarita V. Adve & Kourosh Gharachorloo,

September 1995

• A primer on memory consistency and cache coherence, Sorin, Hill and wood, 2011 (chapters 3 and

4)

• Memory Models: A Case for Rethinking Parallel Languages and Hardware, Adve and Boehm,

2010

36

Memory Consistency

Formal specification of memory semantics

Guarantees as to how shared memory will

behave on systems with multiple processors

Ordering of reads and writes

Essential for programmer (OS writer!) to

understand

37

Why Bother?

Memory consistency models affect everything

Programmability

Performance

Portability

Model must be defined at all levels

Programmers and system designers care

38

Uniprocessor Systems

Memory operations occur:

One at a time

In program order

Read returns value of last write

Only matters if location is the same or dependent

Many possible optimizations

Intuitive!

39

How does a core reorder? (1)

Store-store reordering:

Non-FIFO write buffer

Load-load or load-store/store-load reordering:

Out of order execution

Should the hardware prevent any of this

behavior?

40

Multiprocessor: Example

41

Cont’d

S2 and S1 reordered

Why? How?

42

Example 2

43

Sequential Consistency

The result of any

execution is the same

as if all operations

were executed on a

single processor

Operations on each

processor occur in the

sequence specified by

the executing program

44

P1 P2 P3 Pn…

Memory

One execution sequence

45

46

S.C. Disadvantages

Difficult to implement!

Huge lost potential for optimizations

Hardware (cache) and software (compiler)

Be conservative: err on the safe side

Major performance hit

47

Relaxed Consistency

Program Order relaxations (different locations)

W → R; W → W; R → R/W

Write Atomicity relaxations

Read returns another processor’s Write early

Combined relaxations

Read your own Write (okay for S.C.)

Safety Net – available synchronization

operations

Note: assume one thread per core

48

Synchronization is broken!

How can we solve this problem?

Answer: Memory Barrier/Fence

A special complier or CPU instruction that

enforces an ordering constraint

Compiler: asm volatile ("" ::: "memory");

CPU: mfence/lfence

