
Advanced Operating Systems

(CS 202)

Scheduling (2)

22

Lottery Scheduling

2

33

Problems with Traditional schedulers

Priority systems are ad hoc: highest priority always

wins

Try to support fair share by adjusting priorities with a

feedback loop

Works over long term

highest priority still wins all the time, but now the Unix priorities

are always changing

Priority inversion: high-priority jobs can be blocked

behind low-priority jobs

Schedulers are complex and difficult to control

44

Lottery scheduling

Elegant way to implement proportional share

scheduling

Priority determined by the number of tickets

each thread has:

Priority is the relative percentage of all of the tickets

whose owners compete for the resource

Scheduler picks winning ticket randomly, gives

owner the resource

Tickets can be used for a variety of resources

55

Example

Three threads

A has 5 tickets

B has 3 tickets

C has 2 tickets

If all compete for the resource

B has 30% chance of being selected

If only B and C compete

B has 60% chance of being selected

66

Its fair
Lottery scheduling is probabilistically fair

If a thread has a t tickets out of T

Its probability of winning a lottery is p = t/T

Its expected number of wins over n drawings is

np

Binomial distribution

Variance σ2 = np(1 – p)

77

Fairness (II)

Coefficient of variation of number of wins

σ/np = √((1-p)/np)

Decreases with √n

Number of tries before winning the lottery

follows a geometric distribution

As time passes, each thread ends receiving

its share of the resource

88

Ticket transfers
How to deal with dependencies?

Explicit transfers of tickets from one client to another

Transfers can be used whenever a client blocks due to

some dependency

When a client waits for a reply from a server, it can temporarily

transfer its tickets to the server

Server has no tickets of its own

Server priority is sum of priorities of its active clients

Can use lottery scheduling to give service to the clients

Similar to priority inheritance

Can solve priority inversion

99

Ticket inflation

Lets users create new tickets

Like printing their own money

Counterpart is ticket deflation

Lets mutually trusting clients adjust their priorities

dynamically without explicit communication

Currencies: set up an exchange rate

Enables inflation within a group

Simplifies mini-lotteries (e.g., for mutexes)

1010

Example (I)

A process manages three threads

A has 5 tickets

B has 3 tickets

C has 2 tickets

It creates 10 extra tickets and assigns

them to process C

Why?

Process now has 20 tickets

1111

Example (II)
These 20 tickets are in a new currency

whose exchange rate with the base currency

is 10/20

The total value of the processes tickets

expressed in the base currency is still equal

to 10

1212

Compensation tickets (I)
I/O-bound threads are likely get less than

their fair share of the CPU because they

often block before their CPU quantum expires

Compensation tickets address this imbalance

1313

Compensation tickets (II)
A client that consumes only a fraction f of its

CPU quantum can be granted a

compensation ticket

Ticket inflates the value by 1/f until the client

starts gets the CPU

1414

Example

CPU quantum is 100 ms

Client A releases the CPU after 20ms

f = 0.2 or 1/5

Value of all tickets owned by A will be

multiplied by 5 until A gets the CPU

Is this fair?

What if A alternates between 1/5 and full

quantum?

1515

Compensation tickets (III)
Compensation tickets

Favor I/O-bound—and interactive—threads

Helps them getting their fair share of the CPU

1616

IMPLEMENTATION
On a MIPS-based DECstation running Mach

3 microkernel

Time slice is 100ms

Fairly large as scheme does not allow preemption

Requires

A fast RNG

A fast way to pick lottery winner

1717

Example

Three threads

A has 5 tickets

B has 3 tickets

C has 2 tickets

List contains

A (0-4)

B (5-7)

C (8-9)

Search time is O(n)
where n is list length

1818

Optimization – use tree

4

A 7

B C

≤

≤

>

>

RB Tree used in Linux

Completely fair scheduler(CFS)

--not lottery based

1919

Long-term fairness (I)

2020

Short term fluctuations
For

2:1

ticket

alloc.

ratio

2121

Stride scheduling

Deterministic version of lottery scheduling

Mark time virtually (counting passes)

Each process has a stride: number of passes between

being scheduled

Stride inversely proportional to number of tickets

Regular, predictable schedule

Can also use compensation tickets

Similar to weighted fair queuing

Linux CFS is similar

21

2222

Stride Scheduling – Basic Algorithm
Client Variables:

Tickets

Relative resource allocation

Strides (

Interval between selection

Pass (

Virtual index of next selection

- minimum ticket allocation

22

Select Client with

Minimum Pass

Advance Client’s Pass

by Client’s Stride

Slide and example from Dong-hyeon Park

2323

Stride Scheduling – Basic Algorithm

23

3:2:1 Allocation
∆ - A (stride = 2)

○ - B (stride = 3)

□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

+2

2424

Stride Scheduling – Basic Algorithm

24

3:2:1 Allocation
∆ - A (stride = 2)

○ - B (stride = 3)

□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3

2525

Stride Scheduling – Basic Algorithm

25

3:2:1 Allocation
∆ - A (stride = 2)

○ - B (stride = 3)

□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3

Time 4: 6 6 6

+2

2626

Stride Scheduling – Basic Algorithm

26

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3

Time 4: 6 6 6

+2

…

3:2:1 Allocation
∆ - A (stride = 2)

○ - B (stride = 3)

□ - C (stride = 6)

2727

Throughput Error Comparison

27

Time (quanta)

A
b

so
lu

te
 E

rr
o

r
(q

u
a

n
ta

)

Error is independent

of the allocation time

in stride scheduling

Hierarchical stride

scheduling has more

balance distribution of

error between clients.

2828

Accuracy of Prototype Implementation

Lottery and Stride
Scheduler implemented
on real-system.

Stride scheduler stayed
within 1% of ideal ratio.

Low system overhead
relative to standard
Linux scheduler.

28

Lottery Scheduler

Stride Scheduler

2929

Linux scheduler
Went through several iterations

Currently CFS

Fair scheduler, like stride scheduling

Supersedes O(1) scheduler: emphasis on

constant time scheduling –why?

CFS is O(log(N)) because of red-black tree

Is it really fair?

What to do with multi-core scheduling?

29

