
Advanced Operating Systems

(CS 202)

Scheduling (1)

Today: CPU Scheduling

2

33

The Process

The process is the OS abstraction for execution

It is the unit of execution

It is the unit of scheduling

It is the dynamic execution context of a program

A process is sometimes called a job or a task

A process is a program in execution

Programs are static entities with the potential for execution

Process is the animated/active program
Starts from the program, but also includes dynamic state

3

44

Process Address Space

4

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

Heap

(Dynamic Memory Alloc)
Address

Space

SP

PC

Static

Dynamic

55

Process State Graph

5

New Ready

Running

Waiting

Terminated

Create

Process

Process Exit

I/O, Page

Fault, etc.

I/O Done

Schedule

Process

Unschedule

Process

66

Threads
Separate dual roles of a process

Resource allocation unit and execution unit

A thread defines a sequential execution stream within a process

(PC, SP, registers)

A process defines the address space, and resources (everything

but threads of execution)

A thread is bound to a single process

Processes, however, can have multiple threads

Threads become the unit of scheduling

Processes are now the containers in which threads execute

Processes become static, threads are the dynamic entities

6

77

Threads in a Process

CSE 153 – Lecture 4 – Threads

7

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)

PC (T2)

88

Thread Design Space

CSE 153 – Lecture 4 – Threads

8

One Thread/Process

Many Address Spaces (Early Unix)

One Thread/Process

One Address Space (MSDOS)

Many Threads/Process

Many Address Spaces (Mac OS, Unix,

Windows)

Many Threads/Process

One Address Space (Pilot, Java)

Address Space

Thread

99

Today: CPU Scheduling
Scheduler runs when we context switching among

processes/threads on the ready queue

What should it do? Does it matter?

Making the decision on what thread to run is called

scheduling

What are the goals of scheduling?

What are common scheduling algorithms?

Lottery scheduling

Scheduling activations

User level vs. Kernel level scheduling of threads

9

1010

Scheduling
Right from the start of multiprogramming, scheduling was identified as

a big issue

CCTS and Multics developed much of the classical algorithms

Scheduling is a form of resource allocation

CPU is the resource

Resource allocation needed for other resources too; sometimes similar

algorithms apply

Requires mechanisms and policy

Mechanisms: Context switching, Timers, process queues, process state

information, …

Scheduling looks at the policies: i.e., when to switch and which

process/thread to run next

10

1111

Preemptive vs. Non-preemptive

scheduling

In preemptive systems where we can interrupt a running

job (involuntary context switch)

We’re interested in such schedulers…

In non-preemptive systems, the scheduler waits for a

running job to give up CPU (voluntary context switch)

Was interesting in the days of batch multiprogramming

Some systems continue to use cooperative scheduling

Example algorithms:

RR, FCFS, Shortest Job First (how to determine shortest), Priority

Scheduling

11

1212

Scheduling Goals
What are some reasonable goals for a scheduler?

Scheduling algorithms can have many different goals:

CPU utilization

Job throughput (# jobs/unit time)

Response time (Avg(Tready): avg time spent on ready queue)

Fairness (or weighted fairness)

Other?

Non-interactive applications:

Strive for job throughput, turnaround time (supercomputers)

Interactive systems

Strive to minimize response time for interactive jobs

Mix?

12

1313

Goals II: Avoid Resource allocation

pathologies

Starvation no progress due to no access to resources

E.g., a high priority process always prevents a low priority

process from running on the CPU

One thread always beats another when acquiring a lock

Priority inversion

A low priority process running before a high priority one

Could be a real problem, especially in real time systems

Mars pathfinder: http://research.microsoft.com/en-

us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

Other

Deadlock, livelock, convoying …

13

1414

Non-preemptive approaches
Introduced just to have a baseline

FIFO: schedule the processes in order of

arrival

Comments?

Shortest Job first

Comments?

14

1515

Preemptive scheduling: Round Robin

Each task gets resource for a fixed period of

time (time quantum)

If task doesn’t complete, it goes back in line

Need to pick a time quantum

What if time quantum is too long?

Infinite?

What if time quantum is too short?

One instruction?

1616

Priority Scheduling

Priority Scheduling

Choose next job based on priority
Airline check-in for first class passengers

Can implement SJF, priority = 1/(expected CPU burst)

Also can be either preemptive or non-preemptive

Problem?

Starvation – low priority jobs can wait indefinitely

Solution

“Age” processes
Increase priority as a function of waiting time

Decrease priority as a function of CPU consumption

16

1717

Combining Algorithms

Scheduling algorithms can be combined

Have multiple queues

Use a different algorithm for each queue

Move processes among queues

Example: Multiple-level feedback queues (MLFQ)

Multiple queues representing different job types
Interactive, CPU-bound, batch, system, etc.

Queues have priorities, jobs on same queue scheduled RR

Jobs can move among queues based upon execution history
Feedback: Switch from interactive to CPU-bound behavior

17

1818

Multi-level Feedback Queue (MFQ)

Goals:

Responsiveness

Low overhead

Starvation freedom

Some tasks are high/low priority

Fairness (among equal priority tasks)

Not perfect at any of them!

Used in Unix (and Windows and MacOS)

1919

MFQ

2020

Unix Scheduler
The canonical Unix scheduler uses a MLFQ

3-4 classes spanning ~170 priority levels
Timesharing: first 60 priorities

System: next 40 priorities

Real-time: next 60 priorities

Interrupt: next 10 (Solaris)

Priority scheduling across queues, RR within a queue
The process with the highest priority always runs

Processes with the same priority are scheduled RR

Processes dynamically change priority
Increases over time if process blocks before end of quantum

Decreases over time if process uses entire quantum

20

2121

Linux scheduler
Went through several iterations

Currently CFS

Fair scheduler, like stride scheduling

Supersedes O(1) scheduler: emphasis on

constant time scheduling regardless of overhead

CFS is O(log(N)) because of red-black tree

Is it really fair?

What to do with multi-core scheduling?

21

