
Wyatt Lloyd*

Michael J. Freedman*

Michael Kaminsky†

David G. Andersen‡

*Princeton, †Intel Labs, ‡CMU

Don’t Settle for Eventual:
Scalable Causal
Consistency for
Wide-Area Storage
with COPS

The Key-value Abstraction

• (Business) Key  Value

• (twitter.com) tweet id  information about
tweet

• (amazon.com) item number  information
about it

• (kayak.com) Flight number  information
about flight, e.g., availability

• (yourbank.com) Account number 
information about it

Wide-Area Storage

Stores:
Status Updates
Likes
Comments
Photos
Friends List

Stores:
Tweets
Favorites
Following List

Stores:
Posts
+1s
Comments
Photos
Circles

Wide-Area Storage
Serves Requests Quickly

Inside the Datacenter

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Remote DC

Desired Properties: ALPS

• Availability

• Low Latency

• Partition Tolerance

• Scalability

“Always On”

Scalability
Increase capacity and throughput in each datacenter

A-Z A-ZA-L

M-Z

A-L

M-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

Desired Property: Consistency

• Restricts order/timing of operations

• Stronger consistency:

– Makes programming easier

– Makes user experience better

Consistency with ALPS

Strong

Sequential

Causal

Eventual

Impossible [Brewer00, GilbertLynch02]

Impossible [LiptonSandberg88, AttiyaWelch94]

COPS

Amazon LinkedIn Facebook/Apache
Dynamo Voldemort Cassandra

System A L P S Consistency

Scatter ✖ ✖ ✖ ✔ ✔ Strong

Walter ✖ ✖ ✖ ? PSI + Txn

COPS ✔ ✔ ✔ ✔ Causal+

Bayou ✔ ✔ ✔ ✖ Causal+

PNUTS ✔ ✔ ? ✔ Per-Key Seq.

Dynamo ✔ ✔ ✔ ✔ ✖ Eventual

Causality By Example

Remove boss from

friends group

Post to friends:

“Time for a new job!”

Friend reads post

Causality ()

Thread-of-Execution

Gets-From

Transitivity

New Job!

Friends
Boss

Causality Is Useful

For Programmers:For Users:

Photo Upload

Add to album

Employment Integrity Referential Integrity

New Job!

Friends
Boss

Conflicts in Causal

K=2
K=1K=1

K=2
K=1

K=2

Conflicts in Causal

K=2K=3

K=2K=3

K=2K=3

Causal + Conflict Handling = Causal+

Previous Causal+ Systems

• Bayou ‘94, TACT ‘00, PRACTI ‘06

– Log-exchange based

• Log is single serialization point

– Implicitly captures and enforces causal order

– Limits scalability OR

– No cross-server causality

Scalability Key Idea

• Dependency metadata explicitly captures causality

• Distributed verifications replace single serialization

– Delay exposing replicated puts until all
dependencies are satisfied in the datacenter

COPS

Causal+
Replication

All
Data

All
Data

All
Data

Client Library

Local Datacenter

Get

get

Client Library

Local Datacenter

Put

Client Library

put

?

?

Replication Q
put

after

K:V

put
+

ordering
metadata

put
after =

Local Datacenter

Dependencies

• Dependencies are explicit metadata on values

• Library tracks and attaches them to put_afters

Dependencies

• Dependencies are explicit metadata on values

• Library tracks and attaches them to put_afters

put(Key, Val)
put_after(Key,Val,deps)

version
deps

. . .
Kversion

(Thread-Of-Execution Rule)

Client 1

Dependencies

• Dependencies are explicit metadata on values

• Library tracks and attaches them to put_afters

deps
. . .
Kversion

L337

M195

(Gets-From Rule)

get(K)

get(K)

value,version,deps'
value

(Transitivity Rule)

deps'

L337

M195

Client 2

Causal+ Replication

Replication Q
put

after

put_after(K,V,deps)
K:V,deps

Causal+ Replication

put_after(K,V,deps) dep_check(L337)
K:V,deps

deps

L337

M195

Exposing values after
dep_checks return

ensures causal+

Basic COPS Summary

• Serve operations locally, replicate in background

– “Always On”

• Partition keyspace onto many nodes

– Scalability

• Control replication with dependencies

– Causal+ Consistency

Remote
Datacenter

Boss

Portugal!

Gets Aren’t Enough

Remote
Progress

Remote
Progress

Remote
Progress

My
Operations

New Job!

Boss
Boss

Portugal!

Boss

Boss New Job!
New Job!

You’re
Fired!!

Remote
Datacenter

Boss

Portugal!

Gets Aren’t Enough

Boss

Portugal!

Boss

BossNew Job!
New Job!

You’re
Fired!!

Portugal!

Remote
Progress

Remote
Progress

Remote
Progress

My
Operations

New Job!

Boss

Boss

New Job!
Portugal!

BossBoss

Get Transactions

• Provide consistent view of multiple keys
– Snapshot of visible values

• Keys can be spread across many servers

• Takes at most 2 parallel
rounds of gets

• No locks, no blocking

Low Latency

Remote
Datacenter

Boss

Portugal!

Get Transactions

Remote
Progress

Remote
Progress

Remote
Progress

My
Operations

New Job!

Boss
Boss

Portugal!Boss

Portugal!

Boss

New Job!

Portugal! Remote
Progress

Remote
Progress

Boss

New Job!
Portugal!

BossBoss

Boss Portugal!

Portugal!Boss

Portugal!Boss

New Job!Boss

Could Get

Never
Boss New Job!

System So Far

• ALPS and Causal+, but …

• Proliferation of dependencies reduces efficiency
– Results in lots of metadata

– Requires lots of verification

• We need to reduce metadata and dep_checks
– Nearest dependencies

– Dependency garbage collection

Many Dependencies

• Dependencies grow with client lifetime

Put

Put

Put

Put

Get
Get

Nearest Dependencies

• Transitively capture all ordering constraints

The Nearest Are Few

• Transitively capture all ordering constraints

The Nearest Are Few

• Only check nearest when replicating

• COPS only tracks nearest

• COPS-GT tracks non-nearest for transactions

• Dependency garbage collection tames
metadata in COPS-GT

Extended COPS Summary

• Get transactions

– Provide consistent view of multiple keys

• Nearest Dependencies

– Reduce number of dep_checks

– Reduce metadata in COPS

Evaluation Questions

• Overhead of get transactions?

• Compare to previous causal+ systems?

• Scale?

Experimental Setup

COPS

Remote DC

COPS ServersClients

Local Datacenter

N N

N

COPS & COPS-GT
Competitive for Expected Workloads

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
a

x
 T

h
ro

u
g
h

p
u

t
(K

o
p

s
/s

e
c
)

Average Inter-Op Delay (ms)

COPS
COPS-GT

High per-client
write rates result
in 1000s of
dependencies

Low per-client
write rates expected

People tweeting
1000 times/sec

People tweeting
1 time/sec

All Put Workload – 4 Servers / Datacenter

COPS & COPS-GT
Competitive for Expected Workloads

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
a

x
 T

h
ro

u
g
h

p
u

t
(K

o
p

s
/s

e
c
)

Average Inter-Op Delay (ms)

COPS
COPS-GT

Varied Workloads – 4 Servers / Datacenter

Pathological Expected

Workload

 0

 0.2

 0.4

 0.6

 0.8

 1

Pathological High
Inter-Op Delay

1:16
Put:Get

1/128
Variance

16KB
Values

Expected
Workload

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

LOG COPS COPS-GT

COPS Low Overhead vs. LOG

• COPS – dependencies ≈ LOG

• 1 server per datacenter only

• COPS and LOG achieve very similar throughput

– Nearest dependencies mean very little metadata

– In this case dep_checks are function calls

COPS Scales Out

 20

 40

 80

 160

 320

LOG
 1 2 4 8 16

COPS
 1 2 4 8 16

COPS-GT

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

Conclusion

• Novel Properties
– First ALPS and causal+ consistent system in COPS
– Lock free, low latency get transactions in COPS-GT

• Novel techniques
– Explicit dependency tracking and verification with

decentralized replication
– Optimizations to reduce metadata and checks

• COPS achieves high throughput and scales out

