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The Key-value Abstraction

• (Business) Key  Value

• (twitter.com) tweet id  information about 
tweet

• (amazon.com) item number  information 
about it

• (kayak.com) Flight number  information 
about flight, e.g., availability

• (yourbank.com) Account number 
information about it



Wide-Area Storage

Stores:
Status Updates
Likes
Comments
Photos
Friends List

Stores:
Tweets
Favorites
Following List

Stores:
Posts
+1s
Comments
Photos
Circles



Wide-Area Storage
Serves Requests Quickly



Inside the Datacenter
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Desired Properties: ALPS

• Availability

• Low Latency

• Partition Tolerance

• Scalability

“Always On”



Scalability
Increase capacity and throughput in each datacenter
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Desired Property: Consistency

• Restricts order/timing of operations

• Stronger consistency:

– Makes programming easier

– Makes user experience better



Consistency with ALPS

Strong

Sequential 

Causal

Eventual 

Impossible [Brewer00, GilbertLynch02]

Impossible [LiptonSandberg88, AttiyaWelch94]

COPS

Amazon LinkedIn  Facebook/Apache
Dynamo Voldemort Cassandra



System A L P S Consistency

Scatter ✖ ✖ ✖ ✔ ✔ Strong

Walter ✖ ✖ ✖ ? PSI + Txn

COPS ✔ ✔ ✔ ✔ Causal+

Bayou ✔ ✔ ✔ ✖ Causal+

PNUTS ✔ ✔ ? ✔ Per-Key Seq.

Dynamo ✔ ✔ ✔ ✔ ✖ Eventual



Causality By Example 

Remove boss from

friends group

Post to friends:

“Time for a new job!”

Friend reads post

Causality (       )

Thread-of-Execution

Gets-From

Transitivity

New Job!

Friends
Boss



Causality Is Useful

For Programmers:For Users:

Photo Upload

Add to album

Employment Integrity Referential Integrity

New Job!

Friends
Boss



Conflicts in Causal

K=2
K=1K=1

K=2
K=1

K=2



Conflicts in Causal

K=2K=3

K=2K=3

K=2K=3

Causal + Conflict Handling = Causal+



Previous Causal+ Systems

• Bayou ‘94, TACT ‘00, PRACTI ‘06

– Log-exchange based

• Log is single serialization point

– Implicitly captures and enforces causal order

– Limits scalability OR

– No cross-server causality



Scalability Key Idea

• Dependency metadata explicitly captures causality

• Distributed verifications replace single serialization

– Delay exposing replicated puts until all   
dependencies are satisfied in the datacenter



COPS

Causal+
Replication

All
Data

All
Data

All
Data

Client Library

Local Datacenter



Get

get

Client Library

Local Datacenter



Put

Client Library

put

?

?

Replication Q
put

after

K:V

put
+

ordering
metadata

put
after =

Local Datacenter



Dependencies

• Dependencies are explicit metadata on values

• Library tracks and attaches them to put_afters



Dependencies

• Dependencies are explicit metadata on values

• Library tracks and attaches them to put_afters

put(Key, Val)
put_after(Key,Val,deps)

version
deps

. . .  
Kversion

(Thread-Of-Execution Rule)

Client 1



Dependencies

• Dependencies are explicit metadata on values

• Library tracks and attaches them to put_afters

deps
. . .  
Kversion

L337

M195

(Gets-From Rule)

get(K)

get(K)

value,version,deps'
value

(Transitivity Rule)

deps'

L337

M195

Client 2



Causal+ Replication

Replication Q
put

after

put_after(K,V,deps)
K:V,deps



Causal+ Replication

put_after(K,V,deps) dep_check(L337)
K:V,deps

deps

L337

M195

Exposing values after 
dep_checks return 

ensures causal+



Basic COPS Summary

• Serve operations locally, replicate in background

– “Always On”

• Partition keyspace onto many nodes

– Scalability

• Control replication with dependencies

– Causal+ Consistency
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Get Transactions

• Provide consistent view of multiple keys
– Snapshot of visible values

• Keys can be spread across many servers

• Takes at most 2 parallel                                              
rounds of gets

• No locks, no blocking

Low Latency
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System So Far

• ALPS and Causal+, but …

• Proliferation of dependencies reduces efficiency
– Results in lots of metadata

– Requires lots of verification

• We need to reduce metadata and dep_checks
– Nearest dependencies

– Dependency garbage collection



Many Dependencies

• Dependencies grow with client lifetime

Put

Put

Put

Put

Get
Get



Nearest Dependencies

• Transitively capture all ordering constraints 



The Nearest Are Few

• Transitively capture all ordering constraints 



The Nearest Are Few

• Only check nearest when replicating

• COPS only tracks nearest

• COPS-GT tracks non-nearest for transactions

• Dependency garbage collection tames 
metadata in COPS-GT



Extended COPS Summary

• Get transactions

– Provide consistent view of multiple keys

• Nearest Dependencies

– Reduce number of dep_checks

– Reduce metadata in COPS



Evaluation Questions

• Overhead of get transactions?

• Compare to previous causal+ systems?

• Scale?



Experimental Setup

COPS

Remote DC

COPS ServersClients

Local Datacenter

N N

N



COPS & COPS-GT
Competitive for Expected Workloads 
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COPS & COPS-GT
Competitive for Expected Workloads 

 0

 20

 40

 60

 80

 100

 1  10  100  1000

M
a

x
 T

h
ro

u
g
h

p
u

t 
(K

o
p

s
/s

e
c
)

Average Inter-Op Delay (ms)

COPS
COPS-GT

Varied Workloads – 4 Servers / Datacenter

Pathological Expected

Workload



 0

 0.2

 0.4

 0.6

 0.8

 1

Pathological High
Inter-Op Delay

1:16
Put:Get

1/128
Variance

16KB
Values

Expected
Workload

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

 

LOG  COPS  COPS-GT

COPS Low Overhead vs. LOG

• COPS – dependencies ≈ LOG

• 1 server per datacenter only  

• COPS and LOG achieve very similar throughput

– Nearest dependencies mean very little metadata

– In this case dep_checks are function calls



COPS Scales Out
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Conclusion

• Novel Properties
– First ALPS and causal+ consistent system in COPS
– Lock free, low latency get transactions in COPS-GT

• Novel techniques
– Explicit dependency tracking and verification with 

decentralized replication
– Optimizations to reduce metadata and checks

• COPS achieves high throughput and scales out


