CalvinFS: Consistent WAN
Replication and Scalable Metdata
Management for Distributed File

Systems

Background

e Scalable solutions provided for data storage,
why not file systems?

Motivation

* Often bottlenecked by the metadata
management layer

* Availability susceptible to data center outages
 Still provides expected file system semantics

Key Contributions

* Distributed database system for scalable
metadata management

e Strongly consistent geo-replication of file
system state

Calvin: Log

Many front end servers

Asynchronously-replicated distributed block
store

Small number of “meta-data” log servers

Transaction requests are replicated and
appended, in order, by the “meta log”

Calvin: Storage Layer

Knowledge of physical data store organization
and actual transaction semantics

Read/write primitives that execute on one
node

Placement manager

Multiversion key-value store at each node,
plus consistent hashing mechanism

Calvin: Scheduler

Drives local transaction execution

Deterministic locking
Transaction protocol:

Perform a
local reads

remote read
results

No distributed commit protocol

~ully examines transaction before execution

transaction
to
completion

CalvinFS Architecture

* Design Principles: * Components
— Main-memory metadata * Block store
store * Calvin database
— Potentially many small files * Client library
— Scalable read/write
throughput

— Tolerate slow writes

— Linearizable and snapshot
reads

— Hash-partitioned metadata

— Optimize for single-file
operations

CalvinFS Block Store

e Variable-size immutable blocks
— 1 byte to 10 megabytes

* Block storage and placement
— Unique ID
— Block “buckets”
— Global Paxos-replicated config file
— Compacts small blocks

CalvinFS Metadata Management

e Key-value store

— Key: absolute path of file/directory

— Value: entry type, permissions, contents

KEY:

Fhoma/fcalvin/fa/paper.tex

VALUE :
type:
permissions:

2fnCcedTor

pEETiEELﬂEEl I

caontentsa:

file
TW=Y r calvin waers

calvin users
calvin users
root root
TWEE—XF root root
Dx3a282138 0 5536
Cxe339392C 0 65536

Cx7363682E O 340el

AF—XT
IFWeEr—-x=Y
I

WEE—XL

E

10

Metadata Storage Layer

* Six transaction types:
— Read(path)
— Create{File, Dir}(path)
— Resize(path, size)

— Write(path, file_offset, source, source offset,
num_bytes)

— Delete(path)
— Edit permissions(path, permissions)

Recursive Operations on Directories

* Use OLLP
* Analyze phase

— Determines affected entries and read/write set

* Run phase
— Check that read/write set has not grown

Performance: File Counts and Memory
Usage

* 10 million files of varying size per machine
* Far less memory used per machine
 Handles many more files than HDFS

Performance:
Throughput

§

:

files read per second

:

file updates per second

(a) FILES READ PER SECOND (OVERALL)

.

T

100000 ==HDFS limit

T . Al L4 hJ T

Mlaky latency
consistent latency ——

i & 18 36 75 150 300
machine count
‘E 300
Linear ﬁ 250
scalability g 200
g '
H 100
g =
2 0

(c) MAX UPDATES PER SECOND (TOTAL)

Linear |
scalability

Sub-linear
scalability

() MAX UPDATES PER SECOND (PER FILE)

1 _I-_ . 1 1 1 1 1 .l
o T —i.___h g
. =

Ty

i i i i i
3 B 18 36 TS 150 30

08}

0.6

D4}

0.2

-eo——g -

Performance: Latency

(@) LATENCY DISTRIBUTIONS (36 MACHINESI

c-——eg - - . 4 - - - - -

create file—
write.'appendj

- e
0.1 1 10
latency (ms)

1

0.8

0.6

04

0.2

0

100
(b} LATEMCY DISTRIBUTICNS (300

1000

Write/append latency
dominated by WAN
replication

e -
(2+ blocks) [| -
rixted ity file— creata file— I'I l
wrilafappend —¢-|
001 01 i 00 000

latency (ma)

Performance: Fault Tolerance

* Able to tolerate outages with little to no hit to
availability

thmughput [opsisea)

1 00008

10000

1000

100

(a) THROUGHPUT (DATAGENTER FAILURE)

risad file

e ™ ™ e ™l

i -1'||.""-|.-'.|'__._-.--....""|_-.. “

crealn bl

PN s

write/append

N 0 0 10 @
fime (seconds)

latency {ms)

(b) LATENCY (DATACENTER FAILURE)
T T T T

1400 +

write/append 99%
L_'a\.'rim.'am:«'.nd 50%

| create lile 99%

1000 croate file 0%, we—

800 p

€00

400 feust

200 raad tile 59% y

read filg SO% s—

()
-20 -10 0 10 20
lime (seconds)

16

Discussion

Ccons

File creation is distributed
transaction, doesn’t scale
well

Metadata operations have to
recursively modify all entries
in affected subtree

File-fragmentation addressed
using mechanism that
entirely rewrites files

Pros

* Fast metadata
management

* Deployments are scalable
on large clusters

* Huge storage capabilities

* High throughput of reads
and updates

* Resistant to datacenter
outages

