
CalvinFS: Consistent WAN 
Replication and Scalable Metdata
Management for Distributed File 

Systems

1



Background

• Scalable solutions provided for data storage, 
why not file systems?

2



Motivation

• Often bottlenecked by the metadata 
management layer

• Availability susceptible to data center outages

• Still provides expected file system semantics

3



Key Contributions

• Distributed database system for scalable 
metadata management

• Strongly consistent geo-replication of file 
system state

4



Calvin: Log

• Many front end servers

• Asynchronously-replicated distributed block 
store

• Small number of “meta-data” log servers

• Transaction requests are replicated and 
appended, in order, by the “meta log”

5



Calvin: Storage Layer

• Knowledge of physical data store organization 
and actual transaction semantics

• Read/write primitives that execute on one 
node

• Placement manager

• Multiversion key-value store at each node, 
plus consistent hashing mechanism

6



Calvin: Scheduler

• Drives local transaction execution

• Fully examines transaction before execution

• Deterministic locking

• Transaction protocol:

• No distributed commit protocol

Perform all 
local reads

Serve 
remote 
reads

Collect 
remote read 

results

Execute 
transaction 

to 
completion

7



CalvinFS Architecture

• Design Principles:
– Main-memory metadata 

store
– Potentially many small files
– Scalable read/write 

throughput
– Tolerate slow writes
– Linearizable and snapshot 

reads
– Hash-partitioned metadata
– Optimize for single-file 

operations

• Components
• Block store
• Calvin database 
• Client library

8



CalvinFS Block Store

• Variable-size immutable blocks

– 1 byte to 10 megabytes

• Block storage and placement

– Unique ID

– Block “buckets”

– Global Paxos-replicated config file

– Compacts small blocks

9



CalvinFS Metadata Management

• Key-value store

– Key: absolute path of file/directory

– Value: entry type, permissions, contents

10



Metadata Storage Layer

• Six transaction types:

– Read(path)

– Create{File, Dir}(path)

– Resize(path, size)

– Write(path, file_offset, source, source_offset, 
num_bytes)

– Delete(path)

– Edit permissions(path, permissions)

11



Recursive Operations on Directories

• Use OLLP

• Analyze phase

– Determines affected entries and read/write set

• Run phase

– Check that read/write set has not grown

12



Performance: File Counts and Memory 
Usage

• 10 million files of varying size per machine

• Far less memory used per machine

• Handles many more files than HDFS

13



Performance: 
Throughput

14

Linear 
scalability

Linear 
scalability

Sub-linear 
scalability



Performance: Latency

15

Write/append latency 
dominated by WAN 

replication



Performance: Fault Tolerance

• Able to tolerate outages with little to no hit to 
availability

16



Discussion

Cons

• File creation is distributed 
transaction, doesn’t scale 
well

• Metadata operations have to 
recursively modify all entries 
in affected subtree

• File-fragmentation addressed 
using mechanism that 
entirely rewrites files

17

Pros
• Fast metadata 

management
• Deployments are scalable 

on large clusters
• Huge storage capabilities
• High throughput of reads 

and updates
• Resistant to datacenter 

outages


