CalvinFS: Consistent WAN
Replication and Scalable Metdata
Management for Distributed File

Systems



Background

e Scalable solutions provided for data storage,
why not file systems?




Motivation

* Often bottlenecked by the metadata
management layer

* Availability susceptible to data center outages
 Still provides expected file system semantics



Key Contributions

* Distributed database system for scalable
metadata management

e Strongly consistent geo-replication of file
system state



Calvin: Log

Many front end servers

Asynchronously-replicated distributed block
store

Small number of “meta-data” log servers

Transaction requests are replicated and
appended, in order, by the “meta log”



Calvin: Storage Layer

Knowledge of physical data store organization
and actual transaction semantics

Read/write primitives that execute on one
node

Placement manager

Multiversion key-value store at each node,
plus consistent hashing mechanism



Calvin: Scheduler

Drives local transaction execution

Deterministic locking
Transaction protocol:

Perform a
local reads

remote read
results

No distributed commit protocol

~ully examines transaction before execution

transaction
to
completion



CalvinFS Architecture

* Design Principles: * Components
— Main-memory metadata * Block store
store * Calvin database
— Potentially many small files * Client library
— Scalable read/write
throughput

— Tolerate slow writes

— Linearizable and snapshot
reads

— Hash-partitioned metadata

— Optimize for single-file
operations



CalvinFS Block Store

e Variable-size immutable blocks
— 1 byte to 10 megabytes

* Block storage and placement
— Unique ID
— Block “buckets”
— Global Paxos-replicated config file
— Compacts small blocks



CalvinFS Metadata Management

e Key-value store

— Key: absolute path of file/directory

— Value: entry type, permissions, contents
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Metadata Storage Layer

* Six transaction types:
— Read(path)
— Create{File, Dir}(path)
— Resize(path, size)

— Write(path, file_offset, source, source offset,
num_bytes)

— Delete(path)
— Edit permissions(path, permissions)



Recursive Operations on Directories

* Use OLLP
* Analyze phase

— Determines affected entries and read/write set

* Run phase
— Check that read/write set has not grown



Performance: File Counts and Memory
Usage

* 10 million files of varying size per machine
* Far less memory used per machine
 Handles many more files than HDFS



Performance:
Throughput

§

:

files read per second

:

file updates per second
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Performance: Latency
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Performance: Fault Tolerance

* Able to tolerate outages with little to no hit to
availability
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Discussion

Ccons

File creation is distributed
transaction, doesn’t scale
well

Metadata operations have to
recursively modify all entries
in affected subtree

File-fragmentation addressed
using mechanism that
entirely rewrites files

Pros

* Fast metadata
management

* Deployments are scalable
on large clusters

* Huge storage capabilities

* High throughput of reads
and updates

* Resistant to datacenter
outages



