
Google File System

CS 202

From paper by Ghemawat, Gobioff & Leung

The Need
Component failures normal

Due to clustered computing

Files are huge

By traditional standards (many TB)

Most mutations are mutations

Not random access overwrite

Co-Designing apps & file system

Typical: 1000 nodes & 300 TB

Desiderata

Must monitor & recover from comp failures

Modest number of large files

Workload

Large streaming reads + small random reads

Many large sequential writes

Random access overwrites don’t need to be efficient

Need semantics for concurrent appends

High sustained bandwidth

More important than low latency

Interface

Familiar

Create, delete, open, close, read, write

Novel

Snapshot

Low cost

Record append

Atomicity with multiple concurrent writes

Architecture

Client

Client

Client

Client

Master

Many Many{
Chunk
Server

Chunk
Server

Chunk
Server

}
data only

Architecture
Store all files

In fixed-size chucks

64 MB

64 bit unique handle

Triple redundancy

Chunk
Server

Chunk
Server

Chunk
Server

Architecture
Master

• Stores all metadata
– Namespace
– Access-control information
– Chunk locations
– ‘Lease’ management

• Heartbeats
• Having one master global knowledge

– Allows better placement / replication
– Simplifies design

Architecture

Client

Client

Client

Client

• GFS code implements API

• Cache only metadata

Using fixed chunk size, translate filename &
byte offset to chunk index.
Send request to master

Replies with chunk handle & location of chunkserver
replicas (including which is ‘primary’)

Cache info
using filename & chunk index as key

Request data from nearest chunkserver
“chunkhandle & index into chunk”

No need to talk more
About this 64MB chunk
Until cached info expires or file reopened

Often initial request asks about
Sequence of chunks

Metadata

Master stores three types

File & chunk namespaces

Mapping from files chunks

Location of chunk replicas

Stored in memory

Kept persistent thru logging

Consistency Model

Consistent = all clients see same data

Consistency Model

Defined = consistent + clients see full effect
of mutation
Key: all replicas must process chunk-mutation
requests in same order

Consistency Model

Different clients may see different data

Implications
Apps must rely on appends, not overwrites

Must write records that

Self-validate

Self-identify

Typical uses

Single writer writes file from beginning to end, then

renames file (or checkpoints along way)

Many writers concurrently append

At-least-once semantics ok

Reader deal with padding & duplicates

Leases & Mutation Order

Objective

Ensure data consistent & defined

Minimize load on master

Master grants ‘lease’ to one replica

Called ‘primary’ chunkserver

Primary serializes all mutation requests

Communicates order to replicas

Write Control & Dataflow

Atomic Appends

As in last slide, but…

Primary also checks to see if append spills
over into new chunk

If so, pads old chunk to full extent

Tells secondary chunk-servers to do the same

Tells client to try append again on next chunk

Usually works because

max(append-size) < ¼ chunk-size [API rule]

(meanwhile other clients may be appending)

Other Issues
Fast snapshot

Master operation

Namespace management & locking

Replica placement & rebalancing

Garbage collection (deleted / stale files)

Detecting stale replicas

Master Replication

Master log & checkpoints replicated

Outside monitor watches master livelihood

Starts new master process as needed

Shadow masters

Provide read-access when primary is down

Lag state of true master

Read Performance

Write Performance

Record-Append Performance

