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What are we going to talk about?
Scalability analysis of 7 system applications 

running on Linux on a 48 core computer

Exim, memcached, Apache, PostgreSQL, gmake, 

Psearchy and MapReduce

How can we improve the traditional Linux for 

better scalability
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Amdahl’s law
If  𝛼 is the fraction of a calculation that is 

sequential, and 1 − 𝛼 is the fraction that can 

be parallelized, the maximum speedup that 

can be achieved by using P processors is 

given according to Amdahl's Law

Speedup = 
1

𝛼+
1−𝛼

𝑃
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Introduction
Popular belief that traditional kernel designs 

won’t scale well on multicore processors

Can traditional kernel designs be used and 

implemented in a way that allows applications 

to scale?
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Why Linux? Why these 

applications?
Linux has a traditional kernel design and the 

Linux community has made a great progress 

in making it scalable

The chosen applications are designed for 

parallel execution and stress many major 

Linux kernel components
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How can we decide if Linux is 

scalable?
Measure scalability of the applications on a 

recent Linux kernel 
2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems

Kernel design is scalable if the changes are 

modest
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Kind of problems
Linux kernel implementation

Applications’ user-level design

Applications’ use of Linux kernel services
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The Applications
2 Types of applications

Applications that previous work has shown not to 

scale well on linux

Memcached, Apache and Metis (MapReduce library)

Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to 

use the kernel intensively

Stress the network stack, file name cache, page 

cache, memory manager, process manager and 

scheduler
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Exim
Exim is a mail server

Single master process listens for incoming 
SMTP connections via TCP

The master forks a new process for each 
connection

Has a good deal of parallelism

Spends 69% of its time in the kernel on a single 
core

Stresses process creation and small file creation 
and deletion
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memcached – Object cache 
In-memory key-value store used to improve 

web application performance

Has key-value hash table protected by 

internal lock

Stresses the network stack, spending 80% of 

its time processing packets in the kernel at 

one core
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Apache – Web server
Popular web server

Single instance listening on port 80.

One process per core – each process has a 

thread pool to service connections

On a single core, a process spends 60% of 

the time in the kernel

Stresses network stack and the file system
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PostgreSQL
Popular open source SQL database

Makes extensive internal use of shared data 

structures and synchronization

Stores database tables as regular files 

accessed concurrently by all processes

For read-only workload, it spends 1.5% of the 

time in the kernel with one core, and 82% 

with 48 cores
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gmake

Implementation of the standard make utility 

that supports executing independent build 

rules concurrently

Unofficial default benchmark in the Linux 

community

Creates more processes than there are 

core, and reads and writes many files

Spends 7.6% of the time in the kernel with 

one core
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Psearchy – File indexexer
Parallel version of searchy, a program to 

index and query web pages

Version in the article runs searchy indexer on 

each core, sharing a work queue of input files
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Metis - MapReduce
MapReduce library for single multicore 

servers

Allocates large amount of memory to hold 

temporary tables, stressing the kernel 

memory allocator

Spends 3% of the time in the kernel with one 

core, 16% of the time with 48 cores
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Kernel Optimizations
Many of the bottlenecks are common to 

multiple applications

The solutions have not been implemented in 

the standard kernel because the problem are 

not serious on small-scale SMPs or are 

masked by I/O delays
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Quick intro to Linux file system
Superblock - The superblock is essentially file 
system metadata and defines the file system type, 
size, status, and information about other metadata 
structures (metadata of metadata)

Inode - An inode exists in a file system and 
represents metadata about a file.

Dentry - A dentry is the glue that holds inodes and 
files together by relating inode numbers to file 
names. Dentries also play a role in directory caching 
which, ideally, keeps the most frequently used files 
on-hand for faster access. File system traversal is 
another aspect of the dentry as it maintains a 
relationship between directories and their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file
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Common problems
The tasks may lock a shared data structures, 

so that increasing the number of cores 

increase the lock wait time

The tasks may write a shared memory 

location, so that increasing the number of 

cores increases the time spent waiting for the 

cache coherence protocol
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Common problems - cont
The tasks may compete for space in a limited 

size shared hardware cache, so that 

increasing the number of cores increases the 

cache miss rate

The tasks may compete for other shared 

hardware resources such as DRAM interface

There may be too few tasks to keep all cores 

busy
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Cache related problems
Many scaling problems are delays caused by 

cache misses when a core uses data that 

other core have written

Sometimes cache coherence related 

operation take about the same time as 

loading data from off-chip RAM

The cache coherence protocol serializes 

modifications to the same cache line
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Multicore packet processing
The Linux network stack connects different 

stages of packet processing with queues

A received packet typically passes through 

multiple queues before arriving at per-socket 

queue

The performance would be better if each 

packet, queue and connection be handled by 

just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network 

cards with multiple hardware queues 21
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Multicore packet processing -

cont
Transmitting – place outgoing packets on the 

hardware queue associated with the current 

core

Receiving – configure the hardware to 

enqueue incoming packets matching a 

particular criteria (source ip and port) on a 

specific queue

Sample outgoing packets and update hardware’s 

flow directing tables to deliver incoming packets 

from that connection directly to the core 
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Sloppy counters – The problem
Linux uses shared counters for reference 

counting and to manage various resources

Lock-free atomic inc and dec do not help 

because of cache coherence
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Sloppy counter – The solution
Each core holds a few spare references to an 

object

It gives ownership of these references to threads 

running on that core when needed, without having 

to modify the global reference count
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Sloppy counter - cont
Core increments the sloppy counter by 𝑉:

1. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑉
I. Get 𝑉 references and decrement 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 by 𝑉 and finish

2. Acquire 𝑈 ≥ 𝑉 references from the central counter 

and decrement the central counter by 𝑈

Core decrements the sloppy counter by 𝑉:

1. Release 𝑉 references for local use and decrement the 

local counter by 𝑉

2. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 release spare references 

by decrementing local count and central count 
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Sloppy counter - cont
Invariant:

σ 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠+number of used resources = 

shared counter
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Sloppy counter - use
These counters are used for counting 

references to:

dentrys

vfsmounts

dst_entrys

track amount of memory allocated by each 

network protocol (such as TCP and UDP)
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Lock-free comparison
There are situations where there are 

bottlenecks because of low scalability of 

name lookups in the dentry cache

The dentry cache speed ups lookup by mapping a 

directory and a file name to a dentry identifying 

the matching inode

When a potential dentry is located, the lookup 

code acquires a per-dentry spin lock to atomically 

compare fields of the dentry with the arguments
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Lock-free comparison - cont
The search can be made lock-free

Use generation counter which is incremented 

after every modification. During modification 

temporarily set the generation counter to 0.

Comparison algorithm:

29



3030

Per core data structures
Kernel data structures that caused scaling 

bottlenecks:

Per super-block list of open files

Table of mount points

Pool of free packet buffers
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False sharing
Some applications caused false sharing in 

the kernel

A variable the kernel updated often was 

located on the same cache

line as a variable it read often
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Evaluation
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Technical details
The experiments were made on a 48 core 

machine 

Tyan Thunder S4985 board

8*(2.4 GHz 6-core AMD Opteron 8431 chips)

Each core has 64Kb L1 cache and 512Kb L2 

cache

The cores on each chip share 6Mb L3 cache

Each chip has 8Gb of local off-chip DRAM
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Exim
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Exim - modifications
Berkeley DB reads /proc/stat to find number 

of cores 

Modification: Cache this information aggressively

Split incoming queues messages across 62 

spool directories, hashing by per connection 

pid
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memcached
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memcached - modifications
False read/write sharing of IXGBE device 

driver data in the net_device and device 

structures

Modification: rearrange structures to isolate 

critical read-only members to their own cache 

lines

Contention on dst_entry structure’s reference 

count in the network stack’s destination 

cache

Modification: use sloppy counter
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Apache
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PostgreSQL
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PostgreSQL - cont
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gmake
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Psearchy/pedsort
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Metis
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Summary of Linux scalability 

problems
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Summary of Linux scalability 

problems - cont
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Summary of Linux scalability 

problems - cont
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Summary of Linux scalability 

problems - cont
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Summary of Bottlenecks
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Summary
Most applications can scale well to many 

cores with modest modifications to the 

applications and to the kernel

More bottlenecks are expected to be 

revealed when running on more cores
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Thank you
This presentation is based on “An Analysis of 

Linux Scalability to Many Cores” by Silas 

Boyd-Wickizer, Austin T. Clements, Yandong

Mao, Aleksey Pesterev, M. Frans Kaashoek, 

Robert Morris, and Nickolai Zeldovich

(https://pdos.csail.mit.edu/papers/linux:osdi10

.pdf )
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