
An Analysis of Linux

Scalability to Many Cores

1

22

What are we going to talk about?
Scalability analysis of 7 system applications

running on Linux on a 48 core computer

Exim, memcached, Apache, PostgreSQL, gmake,

Psearchy and MapReduce

How can we improve the traditional Linux for

better scalability

2

33

Amdahl’s law
If 𝛼 is the fraction of a calculation that is

sequential, and 1 − 𝛼 is the fraction that can

be parallelized, the maximum speedup that

can be achieved by using P processors is

given according to Amdahl's Law

Speedup =
1

𝛼+
1−𝛼

𝑃

3

44

Introduction
Popular belief that traditional kernel designs

won’t scale well on multicore processors

Can traditional kernel designs be used and

implemented in a way that allows applications

to scale?

4

55

Why Linux? Why these

applications?
Linux has a traditional kernel design and the

Linux community has made a great progress

in making it scalable

The chosen applications are designed for

parallel execution and stress many major

Linux kernel components

5

66

How can we decide if Linux is

scalable?
Measure scalability of the applications on a

recent Linux kernel
2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems

Kernel design is scalable if the changes are

modest

6

77

Kind of problems
Linux kernel implementation

Applications’ user-level design

Applications’ use of Linux kernel services

7

88

The Applications
2 Types of applications

Applications that previous work has shown not to

scale well on linux

Memcached, Apache and Metis (MapReduce library)

Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to

use the kernel intensively

Stress the network stack, file name cache, page

cache, memory manager, process manager and

scheduler

8

99

Exim
Exim is a mail server

Single master process listens for incoming
SMTP connections via TCP

The master forks a new process for each
connection

Has a good deal of parallelism

Spends 69% of its time in the kernel on a single
core

Stresses process creation and small file creation
and deletion

9

1010

memcached – Object cache
In-memory key-value store used to improve

web application performance

Has key-value hash table protected by

internal lock

Stresses the network stack, spending 80% of

its time processing packets in the kernel at

one core

10

1111

Apache – Web server
Popular web server

Single instance listening on port 80.

One process per core – each process has a

thread pool to service connections

On a single core, a process spends 60% of

the time in the kernel

Stresses network stack and the file system

11

1212

PostgreSQL
Popular open source SQL database

Makes extensive internal use of shared data

structures and synchronization

Stores database tables as regular files

accessed concurrently by all processes

For read-only workload, it spends 1.5% of the

time in the kernel with one core, and 82%

with 48 cores

12

1313

gmake

Implementation of the standard make utility

that supports executing independent build

rules concurrently

Unofficial default benchmark in the Linux

community

Creates more processes than there are

core, and reads and writes many files

Spends 7.6% of the time in the kernel with

one core

13

1414

Psearchy – File indexexer
Parallel version of searchy, a program to

index and query web pages

Version in the article runs searchy indexer on

each core, sharing a work queue of input files

14

1515

Metis - MapReduce
MapReduce library for single multicore

servers

Allocates large amount of memory to hold

temporary tables, stressing the kernel

memory allocator

Spends 3% of the time in the kernel with one

core, 16% of the time with 48 cores

15

1616

Kernel Optimizations
Many of the bottlenecks are common to

multiple applications

The solutions have not been implemented in

the standard kernel because the problem are

not serious on small-scale SMPs or are

masked by I/O delays

16

1717

Quick intro to Linux file system
Superblock - The superblock is essentially file
system metadata and defines the file system type,
size, status, and information about other metadata
structures (metadata of metadata)

Inode - An inode exists in a file system and
represents metadata about a file.

Dentry - A dentry is the glue that holds inodes and
files together by relating inode numbers to file
names. Dentries also play a role in directory caching
which, ideally, keeps the most frequently used files
on-hand for faster access. File system traversal is
another aspect of the dentry as it maintains a
relationship between directories and their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file

17

1818

Common problems
The tasks may lock a shared data structures,

so that increasing the number of cores

increase the lock wait time

The tasks may write a shared memory

location, so that increasing the number of

cores increases the time spent waiting for the

cache coherence protocol

18

1919

Common problems - cont
The tasks may compete for space in a limited

size shared hardware cache, so that

increasing the number of cores increases the

cache miss rate

The tasks may compete for other shared

hardware resources such as DRAM interface

There may be too few tasks to keep all cores

busy

19

2020

Cache related problems
Many scaling problems are delays caused by

cache misses when a core uses data that

other core have written

Sometimes cache coherence related

operation take about the same time as

loading data from off-chip RAM

The cache coherence protocol serializes

modifications to the same cache line

20

2121

Multicore packet processing
The Linux network stack connects different

stages of packet processing with queues

A received packet typically passes through

multiple queues before arriving at per-socket

queue

The performance would be better if each

packet, queue and connection be handled by

just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network

cards with multiple hardware queues 21

2222

Multicore packet processing -

cont
Transmitting – place outgoing packets on the

hardware queue associated with the current

core

Receiving – configure the hardware to

enqueue incoming packets matching a

particular criteria (source ip and port) on a

specific queue

Sample outgoing packets and update hardware’s

flow directing tables to deliver incoming packets

from that connection directly to the core

22

2323

Sloppy counters – The problem
Linux uses shared counters for reference

counting and to manage various resources

Lock-free atomic inc and dec do not help

because of cache coherence

23

2424

Sloppy counter – The solution
Each core holds a few spare references to an

object

It gives ownership of these references to threads

running on that core when needed, without having

to modify the global reference count

24

2525

Sloppy counter - cont
Core increments the sloppy counter by 𝑉:

1. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑉
I. Get 𝑉 references and decrement 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 by 𝑉 and finish

2. Acquire 𝑈 ≥ 𝑉 references from the central counter

and decrement the central counter by 𝑈

Core decrements the sloppy counter by 𝑉:

1. Release 𝑉 references for local use and decrement the

local counter by 𝑉

2. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 release spare references

by decrementing local count and central count

25

2626

Sloppy counter - cont
Invariant:

σ 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠+number of used resources =

shared counter

26

2727

Sloppy counter - use
These counters are used for counting

references to:

dentrys

vfsmounts

dst_entrys

track amount of memory allocated by each

network protocol (such as TCP and UDP)

27

2828

Lock-free comparison
There are situations where there are

bottlenecks because of low scalability of

name lookups in the dentry cache

The dentry cache speed ups lookup by mapping a

directory and a file name to a dentry identifying

the matching inode

When a potential dentry is located, the lookup

code acquires a per-dentry spin lock to atomically

compare fields of the dentry with the arguments

28

2929

Lock-free comparison - cont
The search can be made lock-free

Use generation counter which is incremented

after every modification. During modification

temporarily set the generation counter to 0.

Comparison algorithm:

29

3030

Per core data structures
Kernel data structures that caused scaling

bottlenecks:

Per super-block list of open files

Table of mount points

Pool of free packet buffers

30

3131

False sharing
Some applications caused false sharing in

the kernel

A variable the kernel updated often was

located on the same cache

line as a variable it read often

31

3232

Evaluation

32

3333

Technical details
The experiments were made on a 48 core

machine

Tyan Thunder S4985 board

8*(2.4 GHz 6-core AMD Opteron 8431 chips)

Each core has 64Kb L1 cache and 512Kb L2

cache

The cores on each chip share 6Mb L3 cache

Each chip has 8Gb of local off-chip DRAM

33

3434

Exim

34

3535

Exim - modifications
Berkeley DB reads /proc/stat to find number

of cores

Modification: Cache this information aggressively

Split incoming queues messages across 62

spool directories, hashing by per connection

pid

35

3636

memcached

36

3737

memcached - modifications
False read/write sharing of IXGBE device

driver data in the net_device and device

structures

Modification: rearrange structures to isolate

critical read-only members to their own cache

lines

Contention on dst_entry structure’s reference

count in the network stack’s destination

cache

Modification: use sloppy counter

37

3838

Apache

38

3939

PostgreSQL

39

4040

PostgreSQL - cont

40

4141

gmake

41

4242

Psearchy/pedsort

42

4343

Metis

43

4444

Summary of Linux scalability

problems

44

4545

Summary of Linux scalability

problems - cont

45

4646

Summary of Linux scalability

problems - cont

46

4747

Summary of Linux scalability

problems - cont

47

4848

Summary of Bottlenecks

48

4949

Summary
Most applications can scale well to many

cores with modest modifications to the

applications and to the kernel

More bottlenecks are expected to be

revealed when running on more cores

49

5050

Thank you
This presentation is based on “An Analysis of

Linux Scalability to Many Cores” by Silas

Boyd-Wickizer, Austin T. Clements, Yandong

Mao, Aleksey Pesterev, M. Frans Kaashoek,

Robert Morris, and Nickolai Zeldovich

(https://pdos.csail.mit.edu/papers/linux:osdi10

.pdf)

50

https://pdos.csail.mit.edu/papers/linux:osdi10.pdf

