
Advanced Operating Systems (CS 202) Instructor: Heng Yin

UCRIVERSIDE

What is this course about?

- How has the role of the operating system evolved over time?
 - > How does the past inform the present?
- What are the principles that underlie Operating Systems?
- What are current and future trends in OS?
- Make it real: projects to get some experience with OS development
- Get you ready to do Systems research

3

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Some topics we will cover

- Operating Systems models and how they evolved
 - Monolithic kernels, micro-kernels, ...
 - > extensibility, protection, performance
- Concurrency:
 - Synchronization and Scheduling
 - Multicore OS
- File systems:
 - > Sequential, networked, distributed, internet scale
- Virtualization:
 - Intel VT, Containers
- Other advanced topics

UCRIVERSIDE

Class format

- > For every topic:
 - Some overview
 - Discuss research papers
- Research papers:
 - Critique for some required papers (1 paper most weeks)
 - > Additional papers discussed in class
 - You are responsible for required papers and material discussed in class

5

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Questions while reading papers

- > What are the primary goals (hypothesis)?
 - 2 sentence elevator pitch
- Why did the authors do what they did the way they did?
 - Understand motivation for design
- What were the driving forces for the paper at the time it was written?
- What parts still hold? What parts don't?
- > How did they experiment to support their ideas?

UCRIVERSIDE

Reading Research Papers

- > Guidelines for reading papers
 - Make sure to identify authors' goals and assumptions. Not always directly stated.
 - Look for high-level takeaways.
 - > Simulate the whole process in your head
 - Follow a multi-pass reading strategy
 - Pass1: Get overview. Pass2: Read details and make notes. Pass3: Re-read details to evaluate.
 - Think how techniques used are applicable today. Identify extensions.

7

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Projects

- 2 Mandatory Projects
 - Modification on xv6
 - Closely related to the topics discussed

UCRIVERSIDE

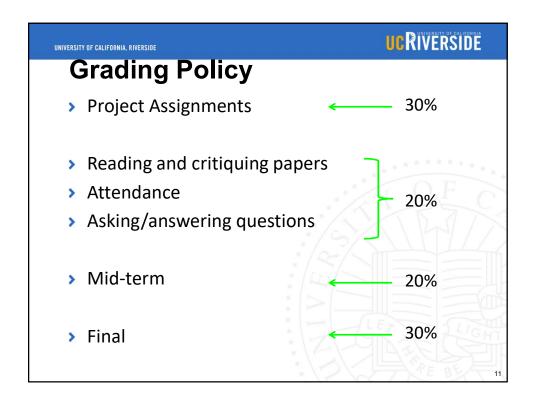
Expectations and little bit about me

- I do research in system security
 - I know some aspects about modern operating systems very well (Windows/Linux/Android, etc.)
 - This is my second time to systematically teach OS
- Expect to discuss and learn with you altogether
 - Read papers carefully
 - Actively participate in class discussions
 - Your participation counts 10% of your final grade!

9

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE


Class Logistics

- Grader: Sri Shaila
 - Office hours and contact information on the class website.
 - Mainly responsible for lab assignments
- Class website:

http://www.cs.ucr.edu/~heng/teaching/cs202-fall17/

Piazza:

https://piazza.com/ucr/fall2017/cs202/home

UCRIVERSIDE

Pre-requisites

- May recap basics of OS, but if so it will be quick
- To do well, you must have had undergrad OS or equivalent preparation
- Architecture, networks, distributed systems courses are also a plus.

13

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Questions?

 Schedule will be posted incrementally on course website

http://www.cs.ucr.edu/~heng/teaching/cs202-fall17

Watch out for course announcements on

http://ilearn.ucr.edu

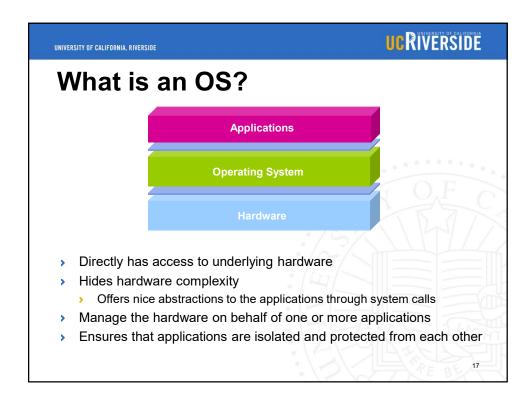
And Piazza

https://piazza.com/ucr/fall2017/cs202/home

UCRIVERSIDE

Situation

- We all have multiple applications running on our smart phone or computer
 - Written by programmers that don't know each other
 - They all just magically work how??
- Soal today: get you ready to discuss OS structure, our first topic


15

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Computing Systems – a hierarchy of abstractions

- Computing systems are a series of abstractions
 - Impossible to think about a system from electrons to application in one shot
 - What are some abstraction layers we have from transistors to applications?
- > This class: OS level abstractions

Getting more technical Number of white solution is an OS? A piece of software that abstracts and arbitrates a computing system A manager in a shop Directs resources Controls CPUs, memory, devices... Enforces working policies Fairness, resource limits, ... Simplifies complex tasks Abstracts hardware; offers system calls

UCRIVERSIDE

Abstraction and Arbitration

- OS offers abstractions and arbitration
- > Example of arbitration?
 - Allocate memory or CPU time
 - Arbitrate access to a shared device
- > Examples of abstractions?
 - > Files, sockets, process, thread, ...

19

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

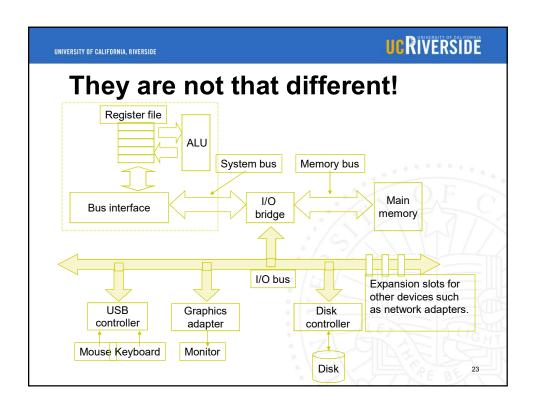
Abstractions, mechanisms, policies

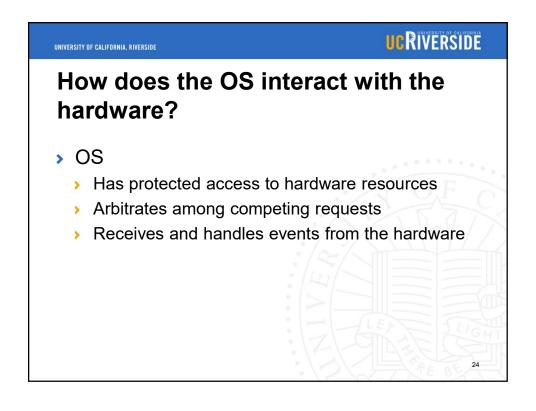
- Memory management example
- Abstraction: memory page
- Mechanisms: allocate, map to a process, deallocate
- Policies: page replacement, LRU, LFU, ...

UCRIVERSIDE

Design principles

- Separation of mechanism and policy
 - Implement flexible mechanisms to support many policies
- Policies must optimize for the common case
 - > Where will the OS be used?
 - What will the user want to execute?


21


UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Hardware and Resources

- Good understanding of the hardware is essential to understanding OS
- > What hardware?
 - Smart phone/tablets?
 - Desktops?
 - Servers?
 - Computing clusters?
 - Cloud?
- > How different are these?

UCRIVERSIDE

What support does the hardware provide to allow that?

- > Manipulating privileged machine state
 - Protected instructions
 - Manipulate device registers, TLB entries, etc.
- Generating and handling "events"
 - Interrupts, exceptions, system calls, etc.
 - Respond to external events
 - CPU requires software intervention to handle fault or trap
- Mechanisms to handle concurrency
 - Interrupts, atomic instructions

25

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Catering to Applications

- Provide resource needs of an application
 - CPU, memory, device access
- When applications launch, the OS loads the program from file into memory
 - Allocates memory for code, data, heap and stack
 - Can the application ask for more resources?
 - > Yes, it receives additional requests and provides resources as needed
- OS also reacts to events in the system
- Gets out of the way as fast as possible

UCRIVERSIDE

CPU management

- Abstractions
 - Program: static entity
 - > Process: program in execution
 - Unit of resource allocation and one thread of execution

27

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Memory management

- > Abstractions:
 - Address space for each processor
- OS implements these abstractions using the available hardware support
 - Paging, segmentation, TLBs, caches...

UCRIVERSIDE

Storage/file system

- Abstraction: Files and directories
 - > Others possible: e.g., object store
- Implemented in a variety of different ways
 - Traditional file system: mapping of files to storage
 - Network file system
 - Distributed FS
 - Internet scale FS

29

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UCRIVERSIDE

Conclusions

- Today was a quick overview of the role of an OS
- Goal is to get you ready to discuss OS organization and evolution, our first topic
 - > First reading assignment out this evening.
- We did not discuss any implementation details
 - You should know from undergraduate OS
 - But please read on your own if you do not remember