
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 14: File system – optimizations and

advanced topics

There’s more to filesystems ☺

Standard Performance improvement techniques

Alternative important File systems

◆ FFS: Unix Fast File system

◆ JFS: making File systems reliable

◆ LFS: Optimizing write performance

Improve the performance/reliability of disk drives?

◆ RAID

Generalizations

◆ Network file systems

◆ Distributed File systems

◆ Internet scale file systems

CSE 153 – Lecture 14 – File system optimizations

Improving Performance

Disk reads and writes take order of milliseconds

◆ Very slow compared to CPU and memory speeds

How to speed things up?

◆ File buffer cache

◆ Cache writes

◆ Read ahead

CSE 153 – Lecture 14 – File system optimizations

CSE 153 – Lecture 14 – File system optimizations

File Buffer Cache

Applications exhibit significant locality for reading and

writing files

Idea: Cache file blocks in memory to capture locality

◆ This is called the file buffer cache

◆ Cache is system wide, used and shared by all processes

◆ Reading from the cache makes a disk perform like memory

◆ Even a 4 MB cache can be very effective

Issues

◆ The file buffer cache competes with VM (tradeoff here)

◆ Like VM, it has limited size

◆ Need replacement algorithms again (LRU usually used)

CSE 153 – Lecture 14 – File system optimizations

Caching Writes

On a write, some applications assume that data
makes it through the buffer cache and onto the disk
◆ As a result, writes are often slow even with caching

Several ways to compensate for this
◆ “write-behind”

» Maintain a queue of uncommitted blocks

» Periodically flush the queue to disk

» Unreliable

◆ Battery backed-up RAM (NVRAM)

» As with write-behind, but maintain queue in NVRAM

» Expensive

◆ Log-structured file system

» Always write next block after last block written

» Complicated

CSE 153 – Lecture 14 – File system optimizations

Read Ahead

Many file systems implement “read ahead”
◆ FS predicts that the process will request next block

◆ FS goes ahead and requests it from the disk

◆ This can happen while the process is computing on previous

block

» Overlap I/O with execution

◆ When the process requests block, it will be in cache

◆ Compliments the disk cache, which also is doing read ahead

For sequentially accessed files can be a big win

◆ Unless blocks for the file are scattered across the disk

◆ File systems try to prevent that, though (during allocation)

CSE 153 – Lecture 14 – File system optimizations

FFS, JFS, LFS, RAID

Now we’re going to look at some example file and

storage systems

◆ BSD Unix Fast File System (FFS)

◆ Journaling File Systems (JFS)

◆ Log-structured File System (LFS)

◆ Redundant Array of Inexpensive Disks (RAID)

CSE 153 – Lecture 14 – File system optimizations

Fast File System

The original Unix file system had a simple,

straightforward implementation

◆ Easy to implement and understand

◆ But very poor utilization of disk bandwidth (lots of seeking)

BSD Unix folks did a redesign (mid 80s) that they called

the Fast File System (FFS)

◆ Improved disk utilization, decreased response time

◆ McKusick, Joy, Leffler, and Fabry

Now the FS to which all other Unix FS’s are compared

Good example of being device-aware for performance

CSE 153 – Lecture 14 – File system optimizations

Data and Inode Placement

Original Unix FS had two placement problems:

1. Data blocks allocated randomly in aging file systems
◆ Blocks for the same file allocated sequentially when FS is new

◆ As FS “ages” and fills, need to allocate into blocks freed up
when other files are deleted

◆ Problem: Deleted files essentially randomly placed

◆ So, blocks for new files become scattered across the disk

2. Inodes allocated far from blocks
◆ All inodes at beginning of disk, far from data

◆ Traversing file name paths, manipulating files, directories
requires going back and forth from inodes to data blocks

Both of these problems generate many long seeks

CSE 153 – Lecture 14 – File system optimizations

Cylinder Groups

BSD FFS addressed these problems using the notion

of a cylinder group

◆ Disk partitioned into groups of cylinders

◆ Data blocks in same file allocated in same cylinder

◆ Files in same directory allocated in same cylinder

◆ Inodes for files allocated in same cylinder as file data blocks

Free space requirement

◆ To be able to allocate according to cylinder groups, the disk

must have free space scattered across cylinders

◆ 10% of the disk is reserved just for this purpose

» Only used by root – this is why “df” may report >100%

CSE 153 – Lecture 14 – File system optimizations

Other Problems

Small blocks (1K) caused two problems:

◆ Low bandwidth utilization

◆ Small max file size (function of block size)

Fix: Use a larger block (4K)

◆ Very large files, only need two levels of indirection for 2^32

◆ Problem: internal fragmentation

◆ Fix: Introduce “fragments” (1K pieces of a block)

Problem: Media failures

◆ Replicate master block (superblock)

Problem: Device oblivious

◆ Parameterize according to device characteristics

CSE 153 – Lecture 14 – File system optimizations

The Results

Problem: crash consistency

l Updates to data and meta data are not atomic

l Consider, what happens when you delete a file

1. Remove directory entry

2. Remove the inode(s)

3. Mark the free map (for all the i-node and data blocks you

freed)

What happens if you crash somewhere in the middle?

CSE 153 – Lecture 14 – File system optimizations

Journaling File Systems

Journaling File systems make updates to a log

◆ Log plans for updates to a journal first

◆ When a crash happens you can replay the journal to restore

consistency

What if we crash when writing journal?

◆ Problem. Possible solution, bracket the changes

» Introduce checksum periodically

» Replay only parts where there is checksum that matches

Journal choices (regular file? Special partition?)

Log meta-data and data?

CSE 153 – Lecture 14 – File system optimizations

CSE 153 – Lecture 14 – File system optimizations

Log-structured File System

The Log-structured File System (LFS) was designed in

response to two trends in workload and technology:

1. Disk bandwidth scaling significantly (40% a year)

» While seek latency is not

2. Large main memories in machines

» Large buffer caches

» Absorb large fraction of read requests

» Can use for writes as well

» Coalesce small writes into large writes

LFS takes advantage of both of these to increase FS

performance

◆ Rosenblum and Ousterhout (Berkeley, 1991)

CSE 153 – Lecture 14 – File system optimizations

LFS Approach

Treat the disk as a single log for appending

◆ Collect writes in disk cache, write out entire collection in one

large disk request

» Leverages disk bandwidth

» No seeks (assuming head is at end of log)

◆ All info written to disk is appended to log

» Data blocks, attributes, inodes, directories, etc.

Looks simple, but only in abstract

CSE 153 – Lecture 14 – File system optimizations

LFS Challenges

LFS has two challenges it must address for it to be

practical

1. Locating data written to the log

» FFS places files in a location, LFS writes data “at the end”

2. Managing free space on the disk

» Disk is finite, so log is finite, cannot always append

» Need to recover deleted blocks in old parts of log

CSE 153 – Lecture 14 – File system optimizations

LFS: Locating Data

FFS uses inodes to locate data blocks

◆ Inodes pre-allocated in each cylinder group

◆ Directories contain locations of inodes

LFS appends inodes to end of the log just like data

◆ Makes them hard to find

Approach

◆ Use another level of indirection: Inode maps

◆ Inode maps map file #s to inode location

◆ Location of inode map blocks kept in checkpoint region

◆ Checkpoint region has a fixed location

◆ Cache inode maps in memory for performance

CSE 153 – Lecture 14 – File system optimizations

LFS Layout

CSE 153 – Lecture 14 – File system optimizations

LFS: Free Space Management

LFS append-only quickly runs out of disk space

◆ Need to recover deleted blocks

Approach:

◆ Fragment log into segments

◆ Thread segments on disk

» Segments can be anywhere

◆ Reclaim space by cleaning segments

» Read segment

» Copy live data to end of log

» Now have free segment you can reuse

Cleaning is a big problem

◆ Costly overhead

CSE 153 – Lecture 14 – File system optimizations

Write Cost Comparison

Write cost of 2

if 20% full Write cost of 10

if 80% full

CSE 153 – Lecture 14 – File system optimizations

Write Cost: Simulation

CSE 153 – Lecture 14 – File system optimizations

RAID

Redundant Array of Inexpensive Disks (RAID)

◆ A storage system, not a file system

◆ Patterson, Katz, and Gibson (Berkeley, 1988)

Idea: Use many disks in parallel to increase storage

bandwidth, improve reliability

◆ Files are striped across disks

◆ Each stripe portion is read/written in parallel

◆ Bandwidth increases with more disks

RAID

CSE 153 – Lecture 14 – File system optimizations

CSE 153 – Lecture 14 – File system optimizations

RAID Challenges

Small files (small writes less than a full stripe)

◆ Need to read entire stripe, update with small write, then write

entire stripe out to disks

Reliability

◆ More disks increases the chance of media failure (MTBF)

Turn reliability problem into a feature

◆ Use one disk to store parity data

» XOR of all data blocks in stripe

◆ Can recover any data block from all others + parity block

◆ Hence “redundant” in name

◆ Introduces overhead, but, hey, disks are “inexpensive”

RAID with parity

CSE 153 – Lecture 14 – File system optimizations

+++ =

CSE 153 – Lecture 14 – File system optimizations

RAID Levels

In marketing literature, you will see RAID systems
advertised as supporting different “RAID Levels”

Here are some common levels:
◆ RAID 0: Striping

» Good for random access (no reliability)

◆ RAID 1: Mirroring

» Two disks, write data to both (expensive, 1X storage overhead)

◆ RAID 2,3 and 4: bit, byte and block level parity. Rarely used.

◆ RAID 5, 6: Floating parity

» Parity blocks for different stripes written to different disks

» No single parity disk, hence no bottleneck at that disk

◆ RAID “10”: Striping plus mirroring

» Higher bandwidth, but still have large overhead

» See this on PC RAID disk cards

Other file system topics

Network File systems (NFS)

◆ Can a file system be shared across the network

◆ The file system is on a single server, the clients access it

remotely

Distributed file systems: Can a file system be stored

(and possibly replicated) across multiple machines

◆ What if they are geographically spread?

◆ Hadoop Distributed File System (HDFS), Google File System

(GFS)

File systems is an exciting research area

◆ Take cs202 if interested!

CSE 153 – Lecture 14 – File system optimizations

CSE 153 – Lecture 14 – File system optimizations

Summary

UNIX file system

◆ Indexed access to files using inodes

FFS

◆ Improve performance by localizing files to cylinder groups

JFS

◆ Improve reliability by logging operations in a journal

LFS

◆ Improve write performance by treating disk as a log

◆ Need to clean log complicates things

RAID

◆ Spread data across disks and store parity on separate disk

