CSE 153
Design of Operating
Systems

Fall 2018

Lecture 14: File system — optimizations and
advanced topics

There’s more to filesystems ©

o Standard Performance improvement techniques

o Alternative important File systems
o+ FFS: Unix Fast File system
+ JFS: making File systems reliable
o LFS: Optimizing write performance

o Improve the performance/reliability of disk drives?
+ RAID

o Generalizations
+ Network file systems
+ Distributed File systems
+ Internet scale file systems

CSE 153 — Lecture 14 — File system optimizations

Improving Performance

o Disk reads and writes take order of milliseconds
+ Very slow compared to CPU and memory speeds

o How to speed things up?
+ File buffer cache
+ Cache writes
+ Read ahead

CSE 153 — Lecture 14 — File system optimizations

File Buffer Cache

o Applications exhibit significant locality for reading and
writing files

o ldea: Cache file blocks in memory to capture locality
+ This is called the file buffer cache
+ Cache is system wide, used and shared by all processes
+ Reading from the cache makes a disk perform like memory
+ Even a 4 MB cache can be very effective

o Issues

+ The file buffer cache competes with VM (tradeoff here)
+ Like VM, it has limited size

+ Need replacement algorithms again (LRU usually used)

CSE 153 — Lecture 14 — File system optimizations

Caching Writes

o On a write, some applications assume that data
makes it through the buffer cache and onto the disk
+ As aresult, writes are often slow even with caching

o Several ways to compensate for this

+ “write-behind”
» Maintain a queue of uncommitted blocks
» Periodically flush the queue to disk
» Unreliable

+ Battery backed-up RAM (NVRAM)
» As with write-behind, but maintain queue in NVRAM
» EXpensive

+ Log-structured file system
» Always write next block after last block written
» Complicated

CSE 153 — Lecture 14 — File system optimizations

Read Ahead

1 Many file systems implement “read ahead”

*

*

*

*

*

FS predicts that the process will request next block
FS goes ahead and requests it from the disk

This can happen while the process is computing on previous
block

» Overlap 1/0 with execution
When the process requests block, it will be in cache
Compliments the disk cache, which also is doing read ahead

o For sequentially accessed files can be a big win
+ Unless blocks for the file are scattered across the disk
+ File systems try to prevent that, though (during allocation)

CSE 153 — Lecture 14 — File system optimizations

FFS, JFS, LFS, RAID

» Now we’ re going to look at some example file and
storage systems
+ BSD Unix Fast File System (FFS)
+ Journaling File Systems (JFS)
+ Log-structured File System (LFS)
+ Redundant Array of Inexpensive Disks (RAID)

CSE 153 — Lecture 14 — File system optimizations

Fast File System

o The original Unix file system had a simple,
straightforward implementation
+ Easy to implement and understand
+ But very poor utilization of disk bandwidth (lots of seeking)

o BSD Unix folks did a redesign (mid 80s) that they called
the Fast File System (FFS)

+ Improved disk utilization, decreased response time
+ McKusick, Joy, Leffler, and Fabry

o Now the FS to which all other Unix FS’ s are compared

o Good example of being device-aware for performance

CSE 153 — Lecture 14 — File system optimizations

Data and Inode Placement

Original Unix FS had two placement problems:

1. Data blocks allocated randomly in aging file systems
+ Blocks for the same file allocated sequentially when FS is new

+ As FS “ages” and fills, need to allocate into blocks freed up
when other files are deleted

+ Problem: Deleted files essentially randomly placed
+ S0, blocks for new files become scattered across the disk

2. Inodes allocated far from blocks
+ Allinodes at beginning of disk, far from data

+ Traversing file name paths, manipulating files, directories
requires going back and forth from inodes to data blocks

Both of these problems generate many long seeks

CSE 153 — Lecture 14 — File system optimizations

Cylinder Groups

o BSD FFS addressed these problems using the notion
of a cylinder group
+ Disk partitioned into groups of cylinders
+ Data blocks in same file allocated in same cylinder
+ Files in same directory allocated in same cylinder
+ Inodes for files allocated in same cylinder as file data blocks

» Free space requirement

+ To be able to allocate according to cylinder groups, the disk
must have free space scattered across cylinders

+ 10% of the disk is reserved just for this purpose
» Only used by root — this is why “df” may report >100%

CSE 153 — Lecture 14 — File system optimizations

Other Problems

o Small blocks (1K) caused two problems:
+ Low bandwidth utilization
+ Small max file size (function of block size)

o Fix: Use a larger block (4K)
+ Very large files, only need two levels of indirection for 232
+ Problem: internal fragmentation
« Fix: Introduce “fragments” (1K pieces of a block)

o Problem: Media failures
+ Replicate master block (superblock)

o Problem: Device oblivious
+ Parameterize according to device characteristics

CSE 153 — Lecture 14 — File system optimizations

The Results

Table IIa. Reading Rates of the Qld and New UNIX File Systems

Type of Processor and Speed Read % CPU
file sysiem bus measured (Kbytes/s) bandwidth %

01d 1024 750/UNIBUS 29 29/983 3 11
New 4006/1024 750/UNIBUS 221 221 /983 22 43
New 8192/1024 750/UNIBUS 233 233/983 24 29
New 4096/1024 T50/MASSBUS 466 466,983 47 3
New 8192/1024 7T50/MASSBUS 466 466/983 47 bd

Table IIb. Writing Rates of the Old and New UNIX File Systems

Type of Processor and Speed Write % CPU
file system bus measured {(Kbytes/s) bandwidth %

Old 1024 760/UNIBUS 48 48/983 5 29
New 4096/1024 T60/UNIBUS 142 142/983 14 43
New 8192/1024 750/UNIBUS 215 215/983 22 46
New 4096,/1024 160/MASSBUS 323 323/983 33 94
New 8192/1024 150/MASSBUS 466 466,983 47 a9b

CSE 153 — Lecture 14 — File system optimizations

Problem: crash consistency

Updates to data and meta data are not atomic

Consider, what happens when you delete a file
1. Remove directory entry
. Remove the inode(s)

. Mark the free map (for all the i-node and data blocks you
freed)

What happens if you crash somewhere in the middle?

CSE 153 — Lecture 14 — File system optimizations

Journaling File Systems

o Journaling File systems make updates to a log
+ Log plans for updates to a journal first

+ When a crash happens you can replay the journal to restore
consistency

o What if we crash when writing journal?

+ Problem. Possible solution, bracket the changes
» Introduce checksum periodically
» Replay only parts where there is checksum that matches

o Journal choices (regular file? Special partition?)
o Log meta-data and data?

CSE 153 — Lecture 14 — File system optimizations

Log-structured File System

o The Log-structured File System (LFS) was designed in
response to two trends in workload and technology:
1. Disk bandwidth scaling significantly (40% a year)
» While seek latency is not

2. Large main memories in machines
Large buffer caches

Absorb large fraction of read requests
Can use for writes as well

Coalesce small writes into large writes

o LFS takes advantage of both of these to increase FS

performance
+ Rosenblum and Ousterhout (Berkeley, 1991)

>

\4

>

v

>

v

>

v

CSE 153 — Lecture 14 — File system optimizations

LFS Approach

o Treat the disk as a single log for appending

+ Collect writes In disk cache, write out entire collection in one
large disk request

» Leverages disk bandwidth
» No seeks (assuming head is at end of log)

+ All info written to disk is appended to log
» Data blocks, attributes, inodes, directories, etc.

o Looks simple, but only in abstract

CSE 153 — Lecture 14 — File system optimizations

LFS Challenges

o LFS has two challenges it must address for it to be
practical

1. Locating data written to the log
» FFS places files in a location, LFS writes data “at the end”

2. Managing free space on the disk

» Disk is finite, so log is finite, cannot always append
» Need to recover deleted blocks in old parts of log

CSE 153 — Lecture 14 — File system optimizations

LFS: Locating Data

n FFS uses inodes to locate data blocks
+ Inodes pre-allocated in each cylinder group
+ Directories contain locations of inodes

o LFS appends inodes to end of the log just like data
+ Makes them hard to find

o Approach
+ Use another level of indirection: Inode maps
+ Inode maps map file #s to inode location
+ Location of inode map blocks kept in checkpoint region
+ Checkpoint region has a fixed location
+ Cache inode maps in memory for performance

CSE 153 — Lecture 14 — File system optimizations

LFS Layout

Diisk

Sprite LFS drl Unix FFS

Fig. 1. A comparison between Sprite LFS and Unix FFS. This example shows the modified disk
blocks written by Sprite LFS and Unix FFS when creating two single-block files named dir1 /file1
and dr2 /file2. Each system must write new data blocks and inodes for file1 and file2, plus new
data blocks and inodes for the containing directories. Unix FFS requires ten nonsequential
writes for the new information (the inodes for the new files are each written twice to ease
recovery from crashes), while Sprite LFS performs the operations in a single large write, The
same number of disk accesses will be required to read the files in the two systems. Sprite LFS
also writes out new inode map blocks to record the new inode locations

CSE 153 — Lecture 14 — File system optimizations

LFS: Free Space Management

o LFS append-only quickly runs out of disk space
+ Need to recover deleted blocks

o Approach:
+ Fragment log into segments

+ Thread segments on disk
» Segments can be anywhere

+ Reclaim space by cleaning segments
» Read segment
» Copy live data to end of log
» Now have free segment you can reuse

o Cleaning is a big problem
+ Costly overhead

CSE 153 — Lecture 14 — File system optimizations

Write Cost Comparison

Write cost _ |
14.0 _I.-...IL. ui_
12.0- . Log-structured
; z
Write cost of 2 | 100F====--=----~ St i
if 20% full [~g0- =~ LE3 loday .
N 5 ~~.] Write cost of 10
6.0, if 80% full
N R e e — RO ———
2.0 FFS improved

0.0} S
00 02 04 06 08 1.0

Fraction alive in segment cleaned (1)

Fig. 3. Wrile cost as a function of u for small files In a log-structured file system, the write
cost depends strongly on the utilization of the segments thal are cleaned. The more live data in
segments cleaned, the more disk bandwidth that is needed for cleaning and not available for
writing new data. The figure also shows two reference points: “FFS today,” which represenis
Unix FFS today, and “FFS improved,” which is our estimate of the best performance possible in
an improved Unix FFS. Write cost for Unux FFS is not sensitive to the amount of disk space in
use,

CSE 153 — Lecture 14 — File system optimizations

Write Cost: Simulation

Write cost
14 ﬂ - E___.-_._!._..._.__.r_...._-__-_i.........-E..;._Nn m
12,0~ " LFS hot-and-cold
00-F-=-----=-=--- " FFS today

8.0 LFS uniform

401 Z T RS improved
2.0
0

—— mpmme=- - et CLEELL

n .
0. n -:} 2 -:] 4 ﬂ ﬁ 0.8 1.0
Disk capacity utilization

3
9

TeErrwEra-
[

Fig. 4. Initial simulation results. The curves labeled “FFS today™ and “FFS improved” are
reproduced from Figure 3 for comparison. The curve labeled “No variance” shows the write cost
that would secur il all sepments always had exactly the same utilization. The “LFS uniform”
curve represents a log-structured file system with uniform aceess pattern and a greedy cleaning
policy: the cleaner chooses the least-utilized segments. The “LFS hot-and-cold™ curve represents
a log-structured file system with locality of file access. It uses a greedy cleaning policy and the
cleaner also sorts the live data by age before writing it out again. The x-axis is overall disk

capacity utilization, which is not necessarily the same as the utilization of the segments being
cleaned.

CSE 153 — Lecture 14 — File system optimizations

RAID

o Redundant Array of Inexpensive Disks (RAID)
+ A storage system, not a file system
+ Patterson, Katz, and Gibson (Berkeley, 1988)

o ldea: Use many disks in parallel to increase storage
bandwidth, improve reliability
+ Files are striped across disks
+ Each stripe portion is read/written in parallel
+ Bandwidth increases with more disks

CSE 153 — Lecture 14 — File system optimizations

RAID

P4
JOood

CSE 153 — Lecture 14 — File system optimizations

RAID Challenges

o Small files (small writes less than a full stripe)

+ Need to read entire stripe, update with small write, then write
entire stripe out to disks

o Reliablility
+ More disks increases the chance of media failure (MTBF)

o Turn reliability problem into a feature

+ Use one disk to store parity data
» XOR of all data blocks in stripe

+ Can recover any data block from all others + parity block
+ Hence “redundant” in name
« Introduces overhead, but, hey, disks are “inexpensive”

CSE 153 — Lecture 14 — File system optimizations

RAID with parity

RAID Levels

o In marketing literature, you will see RAID systems
advertised as supporting different “RAID Levels”

o Here are some common levels:
+ RAID 0: Striping
» Good for random access (no reliability)
+ RAID 1: Mirroring
» Two disks, write data to both (expensive, 1X storage overhead)
+ RAID 2,3 and 4: bit, byte and block level parity. Rarely used.
+ RAID 5, 6: Floating parity
» Parity blocks for different stripes written to different disks
» No single parity disk, hence no bottleneck at that disk

+ RAID “10”: Striping plus mirroring
» Higher bandwidth, but still have large overhead
» See this on PC RAID disk cards

CSE 153 — Lecture 14 — File system optimizations

Other file system topics

o Network File systems (NFS)
+ Can a file system be shared across the network

+ The file system is on a single server, the clients access it
remotely

o Distributed file systems: Can a file system be stored
(and possibly replicated) across multiple machines

+ What if they are geographically spread?

+ Hadoop Distributed File System (HDFS), Google File System
(GFS)

o File systems is an exciting research area
+ Take cs202 if interested!

CSE 153 — Lecture 14 — File system optimizations

Summary

o UNIX file system
+ Indexed access to files using inodes

o FFS
+ Improve performance by localizing files to cylinder groups

0 JFS
+ Improve reliability by logging operations in a journal

o LFS

+ Improve write performance by treating disk as a log
+ Need to clean log complicates things

o RAID
+ Spread data across disks and store parity on separate disk

CSE 153 — Lecture 14 — File system optimizations

