
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 13: File Systems (2)—Abstractions

and implementation

Plan for today

Abstractions for the disk drive that:

◆ Store information persistently

◆ Allow users to organize information

◆ Provide tools for controlling access

How to implement the abstractions

◆ We saw the structure of disk drives

» Sea of blocks

» Seeks are costly

» How to support abstractions?

CSE 153 – Lecture 13 – File Systems (2) 2

CSE 153 – Lecture 13 – File Systems (2) 3

File Systems

File systems

◆ Implement an abstraction (files) for secondary storage

◆ Organize files logically (directories)

◆ Permit sharing of data between processes, people, and

machines

◆ Protect data from unwanted access (security)

CSE 153 – Lecture 13 – File Systems (2) 4

Files

A file is a sequence of bytes with some properties

◆ Owner, last read/write time, protection, etc.

A file can also have a type

◆ Understood by the file system

» Block, character, device, portal, link, etc.

◆ Understood by other parts of the OS or runtime libraries

» Executable, dll, souce, object, text, etc.

A file’s type can be encoded in its name or contents

◆ Windows encodes type in name

» .com, .exe, .bat, .dll, .jpg, etc.

◆ Unix encodes type in contents

» Magic numbers, initial characters (e.g., #! for shell scripts)

CSE 153 – Lecture 13 – File Systems (2) 5

Basic File Operations

Unix

creat(name)

open(name, how)

read(fd, buf, len)

write(fd, buf, len)

sync(fd)

seek(fd, pos)

close(fd)

unlink(name)

NT

CreateFile(name, CREATE)

CreateFile(name, OPEN)

ReadFile(handle, …)

WriteFile(handle, …)

FlushFileBuffers(handle, …)

SetFilePointer(handle, …)

CloseHandle(handle, …)

DeleteFile(name)

CopyFile(name)

MoveFile(name)

CSE 153 – Lecture 13 – File Systems (2) 6

File Access Methods

Different file systems differ in the manner that data in a

file can be accessed

◆ Sequential access – read bytes one at a time, in order

◆ Direct access – random access given block/byte number

◆ Record access – file is array of fixed- or variable-length

records, read/written sequentially or randomly by record #

◆ Indexed access – file system contains an index to a particular

field of each record in a file, reads specify a value for that field

and the system finds the record via the index (DBs)

Older systems provide more complicated methods

What file access method do Unix, Windows provide?

CSE 153 – Lecture 13 – File Systems (2) 7

Directories

Directories serve two purposes

◆ For users, they provide a structured way to organize files

◆ For the file system, they provide a convenient naming interface

that allows the implementation to separate logical file organization

from physical file placement on the disk

Most file systems support multi-level directories

◆ Naming hierarchies (/, /usr, /usr/local/, …)

Most file systems support the notion of a current directory

◆ Relative names specified with respect to current directory

◆ Absolute names start from the root of directory tree

CSE 153 – Lecture 13 – File Systems (2) 8

Directory Internals

A directory is a list of entries

◆ <name, location>

◆ Name is just the name of the file or directory

◆ Location depends upon how file is represented on disk

List is usually unordered (effectively random)

◆ Entries usually sorted by program that reads directory

Directories typically stored in files

◆ Only need to manage one kind of secondary storage unit

CSE 153 – Lecture 13 – File Systems (2) 9

Basic Directory Operations

Unix

Directories implemented in files

◆ Use file ops to create dirs

C runtime library provides a

higher-level abstraction for

reading directories

◆ opendir(name)

◆ readdir(DIR)

◆ seekdir(DIR)

◆ closedir(DIR)

Windows

Explicit dir operations

◆ CreateDirectory(name)

◆ RemoveDirectory(name)

Very different method for

reading directory entries

◆ FindFirstFile(pattern)

◆ FindNextFile()

CSE 153 – Lecture 13 – File Systems (2) 10

Path Name Translation

Let’s say you want to open “/one/two/three”

What does the file system do?

◆ Open directory “/” (well known, can always find)

◆ Search for the entry “one”, get location of “one” (in dir entry)

◆ Open directory “one”, search for “two”, get location of “two”

◆ Open directory “two”, search for “three”, get location of

“three”

◆ Open file “three”

Systems spend a lot of time walking directory paths

◆ This is why open is separate from read/write

◆ OS will cache prefix lookups for performance

» /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

CSE 153 – Lecture 13 – File Systems (2) 11

File Sharing

File sharing is important for getting work done

◆ Basis for communication between processes and users

Two key issues when sharing files

◆ Semantics of concurrent access

» What happens when one process reads while another writes?

» What happens when two processes open a file for writing?

◆ Protection

CSE 153 – Lecture 13 – File Systems (2) 12

Protection

File systems implement some kind of protection system

◆ Who can access a file

◆ How they can access it

More generally…

◆ Objects are “what”, subjects are “who”, actions are “how”

A protection system dictates whether a given action

performed by a given subject on a given object should

be allowed

◆ You can read and/or write your files, but others cannot

◆ You can read “/etc/motd”, but you cannot write to it

CSE 153 – Lecture 13 – File Systems (2) 13

Representing Protection

Access Control Lists (ACL)

For each object, maintain a list

of subjects and their permitted

actions

Capabilities

For each subject, maintain a list

of objects and their permitted

actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects

Objects

ACL

Capability

CSE 153 – Lecture 13 – File Systems (2) 14

ACLs and Capabilities

The approaches differ only in how table is represented
◆ What approach does Unix use?

Capabilities are easier to transfer
◆ They are like keys, can handoff, does not depend on subject

In practice, ACLs are easier to manage
◆ Object-centric, easy to grant, revoke

◆ To revoke capabilities, have to keep track of all subjects that
have the capability – a challenging problem

ACLs have a problem when objects are heavily shared
◆ The ACLs become very large

◆ Use groups (e.g., Unix)

CSE 153 – Lecture 13 – File Systems (2) 15

File System Layout

How do file systems use the disk to store files?

File systems define a block size (e.g., 4KB)

◆ Disk space is allocated in granularity of blocks

A “Master Block” determines location of root directory

◆ At fixed disk location, sometimes replicated for reliability

A free map determines which blocks are free, allocated

◆ Usually a bitmap, one bit per block on the disk

◆ Also stored on disk, cached in memory for performance

Remaining blocks store files (and dirs), and swap!

File systems

File system design: how to allocate and keep track of

files and directories

Does it matter? What is the difference?

◆ Performance, reliability, limitations on files, overhead, …

Many different file systems have been proposed and

continue to be proposed

Lets talk about some general ideas first

CSE 153 – Lecture 13 – File Systems (2) 16

CSE 153 – Lecture 13 – File Systems (2) 17

Disk Layout Strategies

Files span multiple disk blocks

How do you find all of the blocks for a file?

1. Contiguous allocation

» Like memory

» Fast, simplifies directory access

» Inflexible, causes fragmentation, needs compaction

2. Linked structure

» Each block points to the next, directory points to the first

» Bad for random access patterns

3. Indexed structure (indirection, hierarchy)

» An “index block” contains pointers to many other blocks

» Handles random better, still good for sequential

» May need multiple index blocks (linked together)

CSE 153 – Lecture 13 – File Systems (2) 18

Unix Inodes

Unix inodes implement an indexed structure for files

◆ Also store metadata info (protection, timestamps, length, ref count…)

Each inode contains 15 block pointers

◆ First 12 are direct blocks (e.g., 4 KB blocks)

◆ Then single, double, and triple indirect

…

0

12
13
14

1

…

… …

(Metadata)

(1)

(2)

(3)

11

CSE 153 – Lecture 13 – File Systems (2) 19

Unix Inodes and Path Search

Unix Inodes are not directories

Inodes describe where on disk the blocks for a file are placed

◆ Directories are files, so inodes also describe where the blocks for

directories are placed on the disk

Directory entries map file names to inodes

◆ To open “/one”, use Master Block to find inode for “/” on disk

◆ Open “/”, look for entry for “one”

◆ This entry gives the disk block number for the inode for “one”

◆ Read the inode for “one” into memory

◆ The inode says where first data block is on disk

◆ Read that block into memory to access the data in the file

This is why we have open in addition to read and write

Symbolic and hard links

A link is a pointer to a file.

Basically create a file that points at another file

Two types:

◆ Symbolic or soft link (file points to the other file’s meta data)

» This metadata index the file

◆ Hard link (file points to the other file’s data directly)

» Repeats the indexing information

CSE 153 – Lecture 13 – File Systems (2) 20

Hard Links

Hard link is a reference to the physical data on

a file system

All named files are hard links

More than one name can be associated with

the same physical data

Hard links can only refer to data that exists on

the same file system

You can not create hard link to a directory

CSE 153 – Lecture 13 – File Systems (2) 21

Hard Links

Example:

◆ Assume you used “vi” to create a new file, you

create the first hard link (vi myfile)

◆ To Create the 2nd, 3rd and etc. hard links, use the

command:

»ln myfile link-name

CSE 153 – Lecture 13 – File Systems (2) 22

Display Hard Links info

Create a new file called “myfile”

Run the command “ls -il” to display the i-node

number and link counter

38753 -rw-rw-r-- 1 uli uli 29 Oct 29 08:47 myfile

^ ^

|-- inode # |-- link counter (one link)

CSE 153 – Lecture 13 – File Systems (2) 23

Display Hard Link Info

Create a 2nd link to the same data:

ln myfile mylink

Run the command “ls -il”:
38753 -rw-rw-r-- 2 uli uli 29 Oct 29 08:47 myfile

38753 -rw-rw-r-- 2 uli uli 29 Oct 29 08:47 mylink

^ ^

|-- inode # |--link counter (2 links)

CSE 153 – Lecture 13 – File Systems (2) 24

Removing a Hard Link

When a file has more than one link, you can

remove any one link and still be able to access

the file through the remaining links.

Hard links are a good way to backup files

without having to use the copy command!

CSE 153 – Lecture 13 – File Systems (2) 25

Symbolic Links

Also Known As (a.k.a.): Soft links or Symlinks

A Symbolic Link is an indirect pointer to a file
– a pointer to the hard link to the file

You can create a symbolic link to a directory

A symbolic link can point to a file on a different
file system

A symbolic link can point to a nonexistent file
(referred to as a “broken link”)

CSE 153 – Lecture 13 – File Systems (2) 26

Symbolic Links

To create a symboic link to the file “myfile”, use

ln -s myfile symlink or

ln --symbolic myfile symlink
[uli@seneca courses] ls -li myfile

44418 -rw-rw-r-- 1 uli uli 49 Oct 29 14:33 myfile

[uli@seneca courses] ln -s myfile symlink

[uli@seneca courses] ls -li myfile symlink

44418 -rw-rw-r-- 1 uli uli 49 Oct 29 14:33 myfile

44410 lrwxrwxrwx 1 uli uli 6 Oct 29 14:33 symlink -> myfile

Different
i-node

File type:
(symbolic link) CSE 153 – Lecture 13 – File Systems (2) 27

Can we create loops?

Yes, with symbolic links

◆ E.g., /usr/nael/hi/there/link_to_hi@

◆ Try it ☺

◆ If you do a recursive command it will get stuck…

Not possible with hard links since we cannot create a

hard link to a directory

◆ There is no difference between the hard link and the original

file

◆ Bad idea to allow loops/links to directories

CSE 153 – Lecture 13 – File Systems (2) 28

