CSE 153 Design of Operating Systems

Fall 2018

Lecture 12: File Systems (1)—Disk drives

OS Abstractions

File Systems Agenda

- First we'll discuss properties of physical disks
 - Structure, Performance
 - Scheduling
- Then we'll discuss how to build file systems (next time)
 - Abstraction:
 - » Files
 - » Directories
 - » Sharing
 - » Protection
 - Implementation
 - » File System Layouts
 - » File Buffer Cache
 - » Read Ahead

Disks and the OS

- Disks are messy physical devices:
 - Errors, bad blocks, missed seeks, etc.
- OS's job is to hide this mess from higher level software
 - Low-level device control (initiate a disk read, etc.)
- Os provides Higher-level abstractions (files, databases, etc.)
 - OS maps them to the device and implements policies to promote
 - » Performance, reliability, protection, ...

What's Inside A Disk Drive?

CSE 153 – Lecture 12 – File Systems

Image courtesy of Seagate Technology

5

Physical Disk Structure

- Disk components
 - Platters
 - Surfaces
 - Tracks
 - Sectors
 - Cylinders
 - Arm
 - Heads

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.

Disk Geometry (Muliple-Platter View)

Aligned tracks form a cylinder.

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

Disk Structure - top view of single platter

Surface organized into tracks Tracks divided into sectors

Head in position above a track

Rotation is counter-clockwise

About to read blue sector

After BLUE read

After reading blue sector

After BLUE read

Red request scheduled next

Disk Access – Seek

After BLUE Seek for RED read

Seek to red's track

Disk Access – Rotational Latency

read

Wait for red sector to rotate around

After BLUE Seek for RED Rotational latency After RED read

Complete read of red

Disk Access – Service Time Components

Disk Access Time

- Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - Time to position heads over cylinder containing target sector.
 - Typical Tavg seek is 3—9 ms
- Rotational latency (Tavg rotation)
 - Time waiting for first bit of target sector to pass under r/w head.
 - Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
 - Typical Tavg rotation = 7200 RPMs
- Transfer time (Tavg transfer)
 - Time to read the bits in the target sector.
 - Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.
 CSE 153 Lecture 12 File Systems

Disk Access Time Example

• Given:

- Rotational rate = 7,200 RPM
- Average seek time = 9 ms.
- Avg # sectors/track = 400.
- Derived:
 - Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
 - Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
 - Taccess = 9 ms + 4 ms + 0.02 ms
- Important points:
 - Access time dominated by seek time and rotational latency.
 - First bit in a sector is the most expensive, the rest are free.
 - SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - » Disk is about 40,000 times slower than SRAM,
 - » 2,500 times slower then DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract:
 - The set of available sectors is modeled as a sequence of bsized logical blocks (0, 1, 2, ...)
- Mapping between logical and actual (physical) sectors
 - Maintained by a device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector)
 - Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

I/O and disk in the system

I/O Bus

CPU chip

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Disks Heterogeneity

- Seagate Barracuda 3.5" (workstation)
 - capacity: 250 750 GB
 - rotational speed: 7,200 RPM
 - sequential read performance: 78 MB/s (outer) 44 MB/s (inner)
 - seek time (average): 8.1 ms
- Seagate Cheetah 3.5" (server)
 - capacity: 73 300 GB
 - rotational speed: 15,000 RPM
 - sequential read performance: 135 MB/s (outer) 82 MB/s (inner)
 - seek time (average): 3.8 ms
- Seagate Savvio 2.5" (smaller form factor)
 - capacity: 73 GB
 - rotational speed: 10,000 RPM
 - sequential read performance: 62 MB/s (outer) 42 MB/s (inner)
 - seek time (average): 4.3 ms

Recent: Seagate Enterprise (2015)

EWSROOM

Press Resources > Press Release

Products > Semiconductors

Samsung Electronics Begins Mass Production of Industry's Largest Capacity SSD – 30.72TB – for Next-Generation Enterprise Systems

Korea on February 20, 2018

New 'PM1643' is built on latest 512Gb V-NAND to offer the most advanced storage, featuring industry-first 1TB NAND flash package, 40GB of DRAM, new controller and custom software

e.

Contrarian View

Disk Scheduling

- Because seeks are so expensive (milliseconds!), OS schedules requests that are queued waiting for the disk
 - FCFS (do nothing)
 - » Reasonable when load is low
 - » Does nothing to minimize overhead of seeks
 - **SSTF** (shortest seek time first)
 - » Minimize arm movement (seek time), maximize request rate
 - » Favors middle blocks, potential starvation of blocks at ends
 - SCAN (elevator)
 - » Service requests in one direction until done, then reverse
 - » Long waiting times for blocks at ends
 - C-SCAN
 - » Like SCAN, but only go in one direction (typewriter)

Disk Scheduling (2)

- In general, unless there are request queues, disk scheduling does not have much impact
 - Important for servers, less so for PCs
- Modern disks often do the disk scheduling themselves
 - Disks know their layout better than OS, can optimize better
 - Ignores, undoes any scheduling done by OS